Discrete-Time Process-Oriented Simulation
with J-Sim

Jaroslav Kager!

University of West Bohemia, Faculty of Applied Sciences,
Department of Computer Science and Engineering,
Univerzitni 8, 30614 Plzeni, Czech Republic

jkacer@kiv.zcu.cz

Abstract. This paper describes J-Sim, a Java library for discrete-time
process-oriented simulation. J-Sim is a fully portable successor to C-
Sim, an already existing library written in C. The concepts used in both
libraries are inherited from the Simula language. The theoretical back-
ground, basic principles of implementation, and two simple examples of
use are presented in this paper.

1 Introduction

J-Sim is a software package whose primary goal is to facilitate simulation of
discrete-time systems in Java. It is strongly inspired by Simula, the first widely
used simulation language, developed in the 1960s by Ole-Johan Dahl and Kristen
Nygaard. (More information about the history and principles of Simula can be
found in [4].) J-Sim offers all concepts known from Simula, including the possibil-
ity of modelling networks which consist of active stations serving a passive flow
of customers. Stations are usually composed of two parts: a queue and a server,
managing the queue. However, a different approach can be taken: the customers
can be represented by active objects, interacting with passive stations. J-Sim is
completely independent of any of the two models, it is only a tool allowing a
specific model to be described and simulated using the Java language. Moreover,
J-Sim is not limited to queueing networks modelling, it can be used for any kind
of simulation having discrete-time character.

2 The Simulation World Description

A simulation model can contain a various number of independent active pro-
cesses. Every process has its own pre-programmed life which can be divided
into parts. All processes within the same simulation model share the same time,
called the simulation time. Its value is equal to zero before the simulation starts
and can only be increased during its progress. One part of a process’s life is
executed at one exact point of simulation time which does not change during
the execution. All parts of all processes’ lives are merged together and arranged
according to the value of their simulation time.

The execution of the simulation is divided into steps. One step corresponds to
the execution of one selected process’s part, having its own value of simulation
time (not necesarrily unique). The execution is fully under the control of the
currently executed process, i.e. no other process can interrupt or postpone the
execution.

All processes share a calendar where events are stored. An event is an object
holding information about a process’s life part; this information contains the
process’s identification and the value of simulation time at which the life part is
scheduled.

In order to divide their lives into parts, processes use reactivation routines
which are able to establish reactivation points in the code of their lives. Two
kinds of reactivation routines and reactivation points can be distinguished:

1. A passivating routine (passivate) terminates the current simulation step
without adding any new event to the calendar; therefore, the process will
not be activated anymore unless another process activates it explicitely.

2. A temporarily passivating routine (hold(At)) terminates the current simula-
tion step and adds a new event to the calendar. This causes the process to
be automatically restarted in the future, after At time units.

3 Design Decisions

The main goal of J-Sim was to provide a modern, easy-to-learn, and easy-to-use
alternative to C-Sim (see [2] and [3]), existing since 1995. C-Sim is written in
ANSI C and therefore is not object oriented. The user has to use some special
constructs (macros) to define a process’s life or an element of a queue and he
must be aware of some unusual features, e.g. access to variables of a process.
Process switching is implemented by using long jumps!.

J-Sim uses Java threads for implementation of processes (one thread per
process) and synchronization routines wait() and notify() to control their
activity. The built-in support for concurrent programming was one of the most
important arguments why Java was selected as the implemetation language,
together with its platform independence and object orientation.

Most similar tools written in Java (see [5], [6], and [7]) are also based on
Java threads, however, they are more complex and thus probably more difficult
to learn.

4 J-Sim Core Classes

All J-Sim classes (except for GUI classes) are located in the package named
cz.zcu.fav.kiv.jsim. It is necessary to import them at the beginning of every
program using J-Sim. In this article, only the most important classes will be
presented.

! setjmp () and longjmp() functions

4.1 The JSimSimulation Class

JSimSimulation instances represent theoretical simulation models where var-
ious number of processes and queues can be inserted. A calendar (instance of
JSimCalendar) is owned by every simulation object, where events created by
the simulation’s processes are inserted. During one simulation step, exactly one
event is interpreted and destroyed afterwards.

To the user, the simulation object offers the possibility of executing one sim-
ulation step by providing the step() method. During the execution, the thread
calling this method (usually the main thread of the application) is suspended
and it is reactivated as soon as the step finishes. Therefore, there is always one
running thread only.

4.2 The JSimProcess Class

The JSimProcess class is a ‘template’ for user processes. A method, called
life(), is introduced in JSimProcess, which contains the code representing
behavior of a process. This method is initially empty and should be overwritten
in user’s subclasses.

There are four principal methods which can be used for process scheduling
and switching: passivate(), hold(), activate(), and cancel().

1. passivate() implements the passivating routine described above.

2. hold () implements the temporarily passivating routine described above.

3. The activate () method inserts a new event into the calendar and therefore
assures that the calling process will get control in future. The method takes
one parameter: the absolute simulation time of activation.

4. The cancel () method deletes all process’s events from the calendar. If the
process is passive, it will not be woken up anymore unless activated again
by another process.

4.3 The JSimHead and JSimLink Classes

The JSimHead class is an equivalent of Simula’s HEAD. It represents the head of
a queue where objects of various types can be inserted. However, the class does
not provide any methods for insertion or removal of data elements. Instead, the
data to be inserted into a queue has to be wrapped by an instance of JSimLink,
J-Sim’s equivalent of LINK, which is able to insert/remove itself into/from a
queue. JSimHead’s useful functions are: empty (), cardinal (), first (), last (),
and clear () already known from Simula, and statistics functions getLw() and
getTw (), returning the mean queue length Ly and the mean waiting time in
queue Ty, respectively.

An instance of the JSimLink class can be inserted at most into one queue,
using one of the following methods: into (), follow(), and precede(). The first
one takes a queue as its argument while the others use another element, already
present in a queue, to insert the caller into the same queue, either before or after
the argument. A JSimLink object can remove itself from a queue by invoking
its out () method.

5 Computing an Open Queueing Network Statistics with
J-Sim

Let’s show the possibilities of J-Sim on an example of a simple queueing network,
depicted in figure 1.

Source 1 Source 2

@
Departure Departure

‘l—pl 1 —po
(> -
p1 D2

Fig. 1. An Open Queueing Network

The network contains two servers, each of them has a FIFO queue where
transactions waiting to be serviced are put. The transactions (coming from two
independent sources) enter the system at two input points and may leave it
at two output points, after being served. We assume exponentially distributed
random arrival time in the input streams of transactions and exponentially dis-
tributed random service time of both servers. The corresponding parameters of
the simulation model are then as follows: A; is the mean frequency of the i*" in-
put stream (and the parameter of the exponential distribution of arrival time),
i is the parameter of the exponential distribution of the i* server’s service
time, p; is the probability of transaction departure after being served in node i
(and with complementary value 1 — p;, the transaction passes into node 3 — i).

5.1 Theoretical Solution

Let’s assume that the parameters of the network are set to the following values:
w1 = pus = 1.0, Ay = A2 = 0.4, and p; = po = 0.5. To find the mean frequencies
of the internal flow of both servers (A4;) under steady state conditions, we may
use the model depicted in figure 2.

The two circles at the bottom stand for the servers, the two upper circles
represent the outside environment where the transactions are generated and
where they ‘return’ after being discarded. Obviously, pp,1 and poy2 are equal

Poy1 P10y Pog2 P20p

A) (Ay
P21

Fig. 2. Model of the Servers’ Internal Flow

to 1 and Agp, and Ag, are equal to A; and A, respectively. The probabilities
p;j of transition from node ¢ to node j can be expressed using the values from
figure 1: p12 = p1, p21 = p2, pro, = 1 —p1, and pag, = 1 — pa.

Now we can proceed with finding A; from the following system of linear
equations:

A1 =po,1 - Ao, +par - Ao
Ay =poga - Aoy +p12- A

After solving this system, we get: Ay = As = 0.8. Subsequently, we can
compute the average load of both servers: p; = ﬁ— Because p; = po = 0.8, both
servers are in steady state. Therefore, we can f)roceed with computing other
characteristics for every server: the mean number of transactions waiting for

2
service (Lw = {*), the mean time in the queue (Tw = Lw) the mean number
1

of transactions being served (Lg = %) the mean time of service (T's =), the

mean number of transactions in the whole server (Lo = 1% or Lg = Lw + Ls)

and the mean response time (Tg = LTQ or Tg = Tw + Ts).

Then, the mean number of transactions in the whole system can be computed

as Lo = Lq1 + Lq2 and the mean response time as Tg = 4 Le __ The results
A

+Aog
are shown in table 1.

Table 1. Theoretical Results — Characteristics of the Open Queueing Network from
Figure 1

| | A [p [Lw [Tw | Is [Ts | Lo [To |
Server 1] 08 | 08| 32 | 40 | 08 | 10 | 40 | 50

Server 2 | 0.8 0.8 3.2 4.0 0.8 1.0 4.0 5.0
Network X X X X X X 8.0 10.0

5.2 Solution Using J-Sim

We choose the classic approach to construct the model of the network — the
servers and the sources of transactions will be active objects while the transac-
tions will be passive.

Complete source texts can be found in directory Examples/08_Queueing-
Networks of the distribution archive. (However, the values of the netwok’s pa-
rameters have been changed.)

Transactions. A transaction is a simple passive object, holding no data except
of the time of its creation. See file Transaction. java for details.

Sources of Transactions. Being an active object, the source has to be inher-
ited from JSimProcess. It is assigned a queue where it stores the transactions
generated during its life. See file Generator. java for complete source text.

public class Generator extends JSimProcess { // ...
protected void life() { // ...
while (true) {
link = new JSimLink(new Transaction(myParent.getCurrentTime()));
link.into(queue); if (queue.getServer().isIdle())
queue.getServer () .activate(myParent.getCurrentTime());
hold(JSimSystem.negExp(lambda)); } /* ... %/ }}}

Servers. Every server has a queue to take transactions from. If the queue is
empty, the server passivates itself and it is restarted later when a transaction
is inserted into its queue. After a transaction is taken out, the server processes
it (simulated by hold()) and puts it into the other queue or throws away. The
number of transactions (counter) and the time spent by them in the system
(transTq) is registred for every server. Therefore, the mean response time of the
whole network can be easily computed. See Server. java for more details.

public class Server extends JSimProcess { // ...
protected void life() { // ...
while (true) {
if (queueln.empty()) passivate(); else {
hold (JSimSystem.negExp (mu)) ;
link = queueIn.first();
if (JSimSystem.uniform(0.0, 1.0) > p) { // throw away
t = (Transaction) link.getData(); counter++;
transTq += myParent.getCurrentTime() - t.getCreationTime() ;
link.out(); link = null; }
else { /* insert again */ link.out(); link.into(queueOut);
if (queueQut.getServer().isIdle())
queueQut.getServer () .activate (myParent.getCurrentTime()) ;

¥Y /% .0 %/ 3}

Running the Simulation. First, a simulation object has to be created. Then,
two queues, two generators and two servers are created and the servers are
assigned to the queues. Finally, the generators have to be activated. The servers
are activated automatically as soon as a transaction is inserted into their empty
input queue.

The simulation can be executed step-by-step when its step() method is
repeatedly invoked, e.g. in a while cycle. Here, we let the simulation run until
the simulation time reaches 1000 time units. Alternatively, we could use a for
cycle and specify the number of steps to be executed.

while ((simulation.getCurrentTime() < 1000.0) &&
(simulation.step() == true)) ;

Results. The program was run five times and the results shown in table 2
were obtained. The last two columns contain the average values obtained by
the statistics functions getLw() and getTw() and the theoretical results from
section 5.1.

Table 2. Results Obtained by the Program — Characteristics of the Open Queueing
Network from Figure 1

| | 1 | 2 | 3 | 4 | 5 |Average|Theoretical Result|

Lw1|332] 291|295 | 4.04| 2.56 | 3.16 3.20
Twi | 427 | 370|370 | 492|3.38| 3.99 4.00
Lw2|3.40| 6.25| 3.46 | 5.01| 2.79 | 4.18 3.20
Two | 438 | 752 4.21 | 6.25 | 3.74 | 5.22 4.00
To |8.79|11.79| 7.97 |11.09| 7.39 | 9.41 10.00

If the program is run more than five times or if we execute more simulation
steps, we will probably get more accurate results, mainly concerning the queue
no. 2.

6 Model of a Simple Parallel Algorithm

As another example, a model of a simple parallel algorithm executed at a shared-
memory multiprocessor is presented. Several processes (with the same program)
periodically utilize a block of shared data. A semaphore with conventional P ()
and V() operations is used to synchronize access to the data. The synchronized
part of the program executed with all the processes is denoted as critical section.

The program of every process contains two main parts repeated in a loop: a
block of local computation and a block where the shared data is updated inside
the critical section. We are given two parameters concerning time conditions
of the program: T,,; (or 1/, respectively) denotes the mean time spent by
process outside the critical section and Teg (or 1/u) denotes the mean time

inside the critical section. We assume exponentially distributed random time
spent by process inside each block.

Our goal is to find out the mean time of all processes’ loops (taking into
account the delays caused by the critical section) and the ratio between conflict-
free-program frequency (as if there were no critical section) and the mean fre-
quency of program with conflicts?.

Let’s say that there are two processes in the system (N = 2), A = 0.5, and
u=1.0.

6.1 Theoretical Solution

First, we should construct a Markov-chain-based model of the system to com-
pute the probabilities of different states of the system. The model is depicted in
figure 3.

G G ()

I I

Fig. 3. Markov-Model of Two-Process System with a Critical Section

In state 0, both processes are computing locally. In state 1, one process is
inside the critical section and the other one is outside. In state 2, one process is
inside the critical section and the other one is blocked inside the P() operation
of the semaphore guarding the critical section.

Since the system has no absorption states and the time spent in all states is
exponentially distributed with parameter A (or 2 or u), the following system of
linear equations can be constructed:

2X-po=p-p1
Apr+p-pr =2\ -po+p-p2
P2 =X-pi

po+pL+p=1

Solving such system, we get: pp = 0.4, p; = 0.4, and py = 0.2. Then, the fre-
quency of loops (taking into account the possible conflicts) and its corresponding
mean time can be evaluated as

pr-p+p-p 04-1402-1 1 1 _
_ — =0.3 T = =—=33
fconf 9 9) conf fconf 0.3
2 A conflict occures when a process invokes P() to enter the critical section but the
critical section is already occupied by another process.

Without any delays caused by the critical section, f and 7" would be
1 1 1 1

fno_conf 1//\ T]-/H 2+1 3 no_conf fno_conf 03
Therefore, the performance decrease caused by the critical section is
Toon; 33 -
D =——=—=1.
ecrease Trowons 3.0

6.2 Solution Using J-Sim

Semaphores. Since data protection facilities, such as semaphores, are not nec-
essary in non-concurrent environment, J-Sim does not offer them yet?. Therefore,
we need to construct the semaphores as our own class. A semaphore has an in-
teger counter (usually set to 1 at the beginning) and a queue where blocked
processes are put.

public class Semaphore {
private int counter; private JSimHead queue; // ...

The P operation decrements the counter if it is positive or blocks (passivates)
the calling process and inserts it at the end of the queue if it is non-positive:

if (counter > 0) counter--; else { // ...
link = new JSimLink(callingProcess); link.into(queue);
callingProcess.passivate2(); } // else,

The V operation increments the counter if the queue is empty (no other
process is entering the critical section) or takes a blocked process from the queue
and restarts it. VO):

if (queue.empty()) counter++; else {

firstLink = queue.first();

firstProcess = (SemProcess) firstLink.getData();
firstProcess.activate (myParent.getCurrentTime());
firstLink.out(); firstLink = null; } // else,

Processes. Processes are active objects, therefore they have to be inherited
from JSimProcess. They share an instance of SharedData (updated inside the
critical section) and a semaphore — instance of Semaphore.

public class SemProcess extends JSimProcess { // ...
private Semaphore sem; private SharedData data; // constr.,

The 1ife() method is very simple. An infinite while cycle contains both
the ‘local block’ and the critical section protected by the semaphore. Real com-
putation in every block is replaced with a call to hold () with an exponentially
distributed random time as parameter. 1life():

3 They will be included in a future version of J-Sim.

while (true) {

/* Local part */ myResult = JSimSystem.negExp(0.1);
hold (JSimSystem.negExp(lambda)) ;

/* Critical section */ sem.P(this);
data.setResult(0.99*data.getResult() + 0.0l*myResult);
data.incCountCS(); hold(JSimSystem.negExp(mu)) ;
sem.V(); } // while,

Results. The simulation was run five times, with simulation time limit of 30000
time units. The results are shown in table 3.

Table 3. Results Obtained by the Program — Characteristics of the Two-Process Sys-
tem with One Critical Section

| | 1 | 2 | 3 | 4 | 5 |Average|Theor. Result|
Mean number of loops| 8951 | 9027 | 9061 | 9064 | 8966 | 9014 9000
Mean time of loops |3.3515|3.3233|3.3109|3.3098|3.3458| 3.3283 3.3
Mean freq. of loops [0.2984|0.3009(0.3020{0.3021{0.2989| 0.3005 0.3
Performance decrease (1.1172]1.1078|1.1036|1.1033(1.1153| 1.1094 1.1

Conclusion

In this article, some basic facts about J-Sim have been presented, including
its theoretical background. Being written in Java, a popular and easy-to-learn
language, J-Sim should become at least as wide-spread as C-Sim, its predecessor.
In the distribution package, there are included source texts, compiled classes,
documentation and many examples. Today, J-Sim is a fully functional library
which has been tested thoroughly, e.g. on the examples included in the package.
J-Sim is available for free at [1].

References

1. J-Sim Home Page: www.j-sim.zcu.cz

2. C-Sim Home Page: www.c-sim.zcu.cz

3. Hlavicka, J. - Racek, S. - Herout, P.: C-Sim v.4.1, Research Report DC-99-09, DCSE
CTU Prague Publishing, Czech Republic, 1999

4. Holmevik, J.R.: The History of Simula,

java.sun.com/people/jag/SimulaHistory.html

Desmo-J Home Page: www.desmoj.de

simjava Home Page: www.dcs.ed.ac.uk/home/hase/simjava

7. sim_tool Home Page: monarc.web.cern.ch/MONARC/sim_tool

o o

Acknowledgement

This research was supported by the grant of the Ministry of Education of the
Czech Republic, No. MSM-235200005 — Information Systems and Technologies.

