
Dis
rete-Time Pro
ess-Oriented Simulationwith J-SimJaroslav Ka�
er1University of West Bohemia, Fa
ulty of Applied S
ien
es,Department of Computer S
ien
e and Engineering,Univerzitn�� 8, 30614 Plze�n, Cze
h Republi
jka
er�kiv.z
u.
zAbstra
t. This paper des
ribes J-Sim, a Java library for dis
rete-timepro
ess-oriented simulation. J-Sim is a fully portable su

essor to C-Sim, an already existing library written in C. The 
on
epts used in bothlibraries are inherited from the Simula language. The theoreti
al ba
k-ground, basi
 prin
iples of implementation, and two simple examples ofuse are presented in this paper.1 Introdu
tionJ-Sim is a software pa
kage whose primary goal is to fa
ilitate simulation ofdis
rete-time systems in Java. It is strongly inspired by Simula, the �rst widelyused simulation language, developed in the 1960s by Ole-Johan Dahl and KristenNygaard. (More information about the history and prin
iples of Simula 
an befound in [4℄.) J-Sim o�ers all 
on
epts known from Simula, in
luding the possibil-ity of modelling networks whi
h 
onsist of a
tive stations serving a passive 
owof 
ustomers. Stations are usually 
omposed of two parts: a queue and a server,managing the queue. However, a di�erent approa
h 
an be taken: the 
ustomers
an be represented by a
tive obje
ts, intera
ting with passive stations. J-Sim is
ompletely independent of any of the two models, it is only a tool allowing aspe
i�
 model to be des
ribed and simulated using the Java language. Moreover,J-Sim is not limited to queueing networks modelling, it 
an be used for any kindof simulation having dis
rete-time 
hara
ter.2 The Simulation World Des
riptionA simulation model 
an 
ontain a various number of independent a
tive pro-
esses. Every pro
ess has its own pre-programmed life whi
h 
an be dividedinto parts. All pro
esses within the same simulation model share the same time,
alled the simulation time. Its value is equal to zero before the simulation startsand 
an only be in
reased during its progress. One part of a pro
ess's life isexe
uted at one exa
t point of simulation time whi
h does not 
hange duringthe exe
ution. All parts of all pro
esses' lives are merged together and arrangeda

ording to the value of their simulation time.



The exe
ution of the simulation is divided into steps. One step 
orresponds tothe exe
ution of one sele
ted pro
ess's part, having its own value of simulationtime (not ne
esarrily unique). The exe
ution is fully under the 
ontrol of the
urrently exe
uted pro
ess, i.e. no other pro
ess 
an interrupt or postpone theexe
ution.All pro
esses share a 
alendar where events are stored. An event is an obje
tholding information about a pro
ess's life part; this information 
ontains thepro
ess's identi�
ation and the value of simulation time at whi
h the life part iss
heduled.In order to divide their lives into parts, pro
esses use rea
tivation routineswhi
h are able to establish rea
tivation points in the 
ode of their lives. Twokinds of rea
tivation routines and rea
tivation points 
an be distinguished:1. A passivating routine (passivate) terminates the 
urrent simulation stepwithout adding any new event to the 
alendar; therefore, the pro
ess willnot be a
tivated anymore unless another pro
ess a
tivates it expli
itely.2. A temporarily passivating routine (hold(�t)) terminates the 
urrent simula-tion step and adds a new event to the 
alendar. This 
auses the pro
ess tobe automati
ally restarted in the future, after �t time units.3 Design De
isionsThe main goal of J-Sim was to provide a modern, easy-to-learn, and easy-to-usealternative to C-Sim (see [2℄ and [3℄), existing sin
e 1995. C-Sim is written inANSI C and therefore is not obje
t oriented. The user has to use some spe
ial
onstru
ts (ma
ros) to de�ne a pro
ess's life or an element of a queue and hemust be aware of some unusual features, e.g. a

ess to variables of a pro
ess.Pro
ess swit
hing is implemented by using long jumps1.J-Sim uses Java threads for implementation of pro
esses (one thread perpro
ess) and syn
hronization routines wait() and notify() to 
ontrol theira
tivity. The built-in support for 
on
urrent programming was one of the mostimportant arguments why Java was sele
ted as the implemetation language,together with its platform independen
e and obje
t orientation.Most similar tools written in Java (see [5℄, [6℄, and [7℄) are also based onJava threads, however, they are more 
omplex and thus probably more diÆ
ultto learn.4 J-Sim Core ClassesAll J-Sim 
lasses (ex
ept for GUI 
lasses) are lo
ated in the pa
kage named
z.z
u.fav.kiv.jsim. It is ne
essary to import them at the beginning of everyprogram using J-Sim. In this arti
le, only the most important 
lasses will bepresented.1 setjmp() and longjmp() fun
tions



4.1 The JSimSimulation ClassJSimSimulation instan
es represent theoreti
al simulation models where var-ious number of pro
esses and queues 
an be inserted. A 
alendar (instan
e ofJSimCalendar) is owned by every simulation obje
t, where events 
reated bythe simulation's pro
esses are inserted. During one simulation step, exa
tly oneevent is interpreted and destroyed afterwards.To the user, the simulation obje
t o�ers the possibility of exe
uting one sim-ulation step by providing the step() method. During the exe
ution, the thread
alling this method (usually the main thread of the appli
ation) is suspendedand it is rea
tivated as soon as the step �nishes. Therefore, there is always onerunning thread only.4.2 The JSimPro
ess ClassThe JSimPro
ess 
lass is a `template' for user pro
esses. A method, 
alledlife(), is introdu
ed in JSimPro
ess, whi
h 
ontains the 
ode representingbehavior of a pro
ess. This method is initially empty and should be overwrittenin user's sub
lasses.There are four prin
ipal methods whi
h 
an be used for pro
ess s
hedulingand swit
hing: passivate(), hold(), a
tivate(), and 
an
el().1. passivate() implements the passivating routine des
ribed above.2. hold() implements the temporarily passivating routine des
ribed above.3. The a
tivate()method inserts a new event into the 
alendar and thereforeassures that the 
alling pro
ess will get 
ontrol in future. The method takesone parameter: the absolute simulation time of a
tivation.4. The 
an
el() method deletes all pro
ess's events from the 
alendar. If thepro
ess is passive, it will not be woken up anymore unless a
tivated againby another pro
ess.4.3 The JSimHead and JSimLink ClassesThe JSimHead 
lass is an equivalent of Simula's HEAD. It represents the head ofa queue where obje
ts of various types 
an be inserted. However, the 
lass doesnot provide any methods for insertion or removal of data elements. Instead, thedata to be inserted into a queue has to be wrapped by an instan
e of JSimLink,J-Sim's equivalent of LINK, whi
h is able to insert/remove itself into/from aqueue. JSimHead's useful fun
tions are: empty(), 
ardinal(), first(), last(),and 
lear() already known from Simula, and statisti
s fun
tions getLw() andgetTw(), returning the mean queue length LW and the mean waiting time inqueue TW , respe
tively.An instan
e of the JSimLink 
lass 
an be inserted at most into one queue,using one of the following methods: into(), follow(), and pre
ede(). The �rstone takes a queue as its argument while the others use another element, alreadypresent in a queue, to insert the 
aller into the same queue, either before or afterthe argument. A JSimLink obje
t 
an remove itself from a queue by invokingits out() method.



5 Computing an Open Queueing Network Statisti
s withJ-SimLet's show the possibilities of J-Sim on an example of a simple queueing network,depi
ted in �gure 1.
���� �������� ����? - ? -- -6 - -6-6
Sour
e 1�1 Sour
e 2�2�1 �2Departure Departure1� p1p1 1� p2p2

Fig. 1. An Open Queueing NetworkThe network 
ontains two servers, ea
h of them has a FIFO queue wheretransa
tions waiting to be servi
ed are put. The transa
tions (
oming from twoindependent sour
es) enter the system at two input points and may leave itat two output points, after being served. We assume exponentially distributedrandom arrival time in the input streams of transa
tions and exponentially dis-tributed random servi
e time of both servers. The 
orresponding parameters ofthe simulation model are then as follows: �i is the mean frequen
y of the ith in-put stream (and the parameter of the exponential distribution of arrival time),�i is the parameter of the exponential distribution of the ith server's servi
etime, pi is the probability of transa
tion departure after being served in node i(and with 
omplementary value 1� pi, the transa
tion passes into node 3� i).5.1 Theoreti
al SolutionLet's assume that the parameters of the network are set to the following values:�1 = �2 = 1.0, �1 = �2 = 0.4, and p1 = p2 = 0.5. To �nd the mean frequen
iesof the internal 
ow of both servers (�i) under steady state 
onditions, we mayuse the model depi
ted in �gure 2.The two 
ir
les at the bottom stand for the servers, the two upper 
ir
lesrepresent the outside environment where the transa
tions are generated andwhere they `return' after being dis
arded. Obviously, p0A1 and p0B2 are equal



���� �������� �����1 �2�0A �0B? 6 ? 6-� p12p21p0A1 p20Bp10A p0B2
Fig. 2. Model of the Servers' Internal Flowto 1 and �0A and �0B are equal to �1 and �2, respe
tively. The probabilitiespij of transition from node i to node j 
an be expressed using the values from�gure 1: p12 = p1, p21 = p2, p10A = 1� p1, and p20B = 1� p2.Now we 
an pro
eed with �nding �i from the following system of linearequations: �1 = p0A1 � �0A + p21 � �2�2 = p0B2 � �0B + p12 � �1After solving this system, we get: �1 = �2 = 0.8. Subsequently, we 
an
ompute the average load of both servers: �i = �i�i . Be
ause �1 = �2 = 0.8, bothservers are in steady state. Therefore, we 
an pro
eed with 
omputing other
hara
teristi
s for every server: the mean number of transa
tions waiting forservi
e (LW = �21�� ), the mean time in the queue (TW = LW� ), the mean numberof transa
tions being served (LS = �� ), the mean time of servi
e (TS = 1� ), themean number of transa
tions in the whole server (LQ = �1�� or LQ = LW +LS),and the mean response time (TQ = LQ� or TQ = TW + TS).Then, the mean number of transa
tions in the whole system 
an be 
omputedas LQ = LQ1 +LQ2 and the mean response time as TQ = LQ�0A+�0B . The resultsare shown in table 1.Table 1. Theoreti
al Results { Chara
teristi
s of the Open Queueing Network fromFigure 1 � � LW TW LS TS LQ TQServer 1 0.8 0.8 3.2 4.0 0.8 1.0 4.0 5.0Server 2 0.8 0.8 3.2 4.0 0.8 1.0 4.0 5.0Network � � � � � � 8.0 10.0



5.2 Solution Using J-SimWe 
hoose the 
lassi
 approa
h to 
onstru
t the model of the network { theservers and the sour
es of transa
tions will be a
tive obje
ts while the transa
-tions will be passive.Complete sour
e texts 
an be found in dire
tory Examples/08 Queueing-Networks of the distribution ar
hive. (However, the values of the netwok's pa-rameters have been 
hanged.)Transa
tions. A transa
tion is a simple passive obje
t, holding no data ex
eptof the time of its 
reation. See �le Transa
tion.java for details.Sour
es of Transa
tions. Being an a
tive obje
t, the sour
e has to be inher-ited from JSimPro
ess. It is assigned a queue where it stores the transa
tionsgenerated during its life. See �le Generator.java for 
omplete sour
e text.publi
 
lass Generator extends JSimPro
ess { // ...prote
ted void life() { // ...while (true) {link = new JSimLink(new Transa
tion(myParent.getCurrentTime()));link.into(queue); if (queue.getServer().isIdle())queue.getServer().a
tivate(myParent.getCurrentTime());hold(JSimSystem.negExp(lambda)); } /* ... */ }}}Servers. Every server has a queue to take transa
tions from. If the queue isempty, the server passivates itself and it is restarted later when a transa
tionis inserted into its queue. After a transa
tion is taken out, the server pro
essesit (simulated by hold()) and puts it into the other queue or throws away. Thenumber of transa
tions (
ounter) and the time spent by them in the system(transTq) is registred for every server. Therefore, the mean response time of thewhole network 
an be easily 
omputed. See Server.java for more details.publi
 
lass Server extends JSimPro
ess { // ...prote
ted void life() { // ...while (true) {if (queueIn.empty()) passivate(); else {hold(JSimSystem.negExp(mu));link = queueIn.first();if (JSimSystem.uniform(0.0, 1.0) > p) { // throw awayt = (Transa
tion) link.getData(); 
ounter++;transTq += myParent.getCurrentTime() - t.getCreationTime();link.out(); link = null; }else { /* insert again */ link.out(); link.into(queueOut);if (queueOut.getServer().isIdle())queueOut.getServer().a
tivate(myParent.getCurrentTime());}}} /* ... */ }}



Running the Simulation. First, a simulation obje
t has to be 
reated. Then,two queues, two generators and two servers are 
reated and the servers areassigned to the queues. Finally, the generators have to be a
tivated. The serversare a
tivated automati
ally as soon as a transa
tion is inserted into their emptyinput queue.The simulation 
an be exe
uted step-by-step when its step() method isrepeatedly invoked, e.g. in a while 
y
le. Here, we let the simulation run untilthe simulation time rea
hes 1000 time units. Alternatively, we 
ould use a for
y
le and spe
ify the number of steps to be exe
uted.while ((simulation.getCurrentTime() < 1000.0) &&(simulation.step() == true)) ;Results. The program was run �ve times and the results shown in table 2were obtained. The last two 
olumns 
ontain the average values obtained bythe statisti
s fun
tions getLw() and getTw() and the theoreti
al results fromse
tion 5.1.Table 2. Results Obtained by the Program { Chara
teristi
s of the Open QueueingNetwork from Figure 11 2 3 4 5 Average Theoreti
al ResultLW1 3.32 2.91 2.95 4.04 2.56 3.16 3.20TW1 4.27 3.70 3.70 4.92 3.38 3.99 4.00LW2 3.40 6.25 3.46 5.01 2.79 4.18 3.20TW2 4.38 7.52 4.21 6.25 3.74 5.22 4.00TQ 8.79 11.79 7.97 11.09 7.39 9.41 10.00If the program is run more than �ve times or if we exe
ute more simulationsteps, we will probably get more a

urate results, mainly 
on
erning the queueno. 2.6 Model of a Simple Parallel AlgorithmAs another example, a model of a simple parallel algorithm exe
uted at a shared-memory multipro
essor is presented. Several pro
esses (with the same program)periodi
ally utilize a blo
k of shared data. A semaphore with 
onventional P()and V() operations is used to syn
hronize a

ess to the data. The syn
hronizedpart of the program exe
uted with all the pro
esses is denoted as 
riti
al se
tion.The program of every pro
ess 
ontains two main parts repeated in a loop: ablo
k of lo
al 
omputation and a blo
k where the shared data is updated insidethe 
riti
al se
tion. We are given two parameters 
on
erning time 
onditionsof the program: Tout (or 1=�, respe
tively) denotes the mean time spent bypro
ess outside the 
riti
al se
tion and TCS (or 1=�) denotes the mean time



inside the 
riti
al se
tion. We assume exponentially distributed random timespent by pro
ess inside ea
h blo
k.Our goal is to �nd out the mean time of all pro
esses' loops (taking intoa

ount the delays 
aused by the 
riti
al se
tion) and the ratio between 
on
i
t-free-program frequen
y (as if there were no 
riti
al se
tion) and the mean fre-quen
y of program with 
on
i
ts2.Let's say that there are two pro
esses in the system (N = 2), � = 0:5, and� = 1:0.6.1 Theoreti
al SolutionFirst, we should 
onstru
t a Markov-
hain-based model of the system to 
om-pute the probabilities of di�erent states of the system. The model is depi
ted in�gure 3.
���� ���� ����0 1 2- -�� 2� �� �Fig. 3. Markov-Model of Two-Pro
ess System with a Criti
al Se
tionIn state 0, both pro
esses are 
omputing lo
ally. In state 1, one pro
ess isinside the 
riti
al se
tion and the other one is outside. In state 2, one pro
ess isinside the 
riti
al se
tion and the other one is blo
ked inside the P() operationof the semaphore guarding the 
riti
al se
tion.Sin
e the system has no absorption states and the time spent in all states isexponentially distributed with parameter � (or 2� or �), the following system oflinear equations 
an be 
onstru
ted:2� � p0 = � � p1� � p1 + � � p1 = 2� � p0 + � � p2� � p2 = � � p1p0 + p1 + p2 = 1Solving su
h system, we get: p0 = 0:4, p1 = 0:4, and p2 = 0:2. Then, the fre-quen
y of loops (taking into a

ount the possible 
on
i
ts) and its 
orrespondingmean time 
an be evaluated asf
onf = p1 � �+ p2 � �2 = 0:4 � 1 + 0:2 � 12 = 0:3; T
onf = 1f
onf = 10:3 = 3:�32 A 
on
i
t o

ures when a pro
ess invokes P() to enter the 
riti
al se
tion but the
riti
al se
tion is already o

upied by another pro
ess.



Without any delays 
aused by the 
riti
al se
tion, f and T would befno 
onf = 11=�+ 1=� = 12 + 1 = 0:�3; Tno 
onf = 1fno 
onf = 10:�3 = 3Therefore, the performan
e de
rease 
aused by the 
riti
al se
tion isDe
rease = T
onfTno 
onf = 3:�33:0 = 1:�16.2 Solution Using J-SimSemaphores. Sin
e data prote
tion fa
ilities, su
h as semaphores, are not ne
-essary in non-
on
urrent environment, J-Sim does not o�er them yet3. Therefore,we need to 
onstru
t the semaphores as our own 
lass. A semaphore has an in-teger 
ounter (usually set to 1 at the beginning) and a queue where blo
kedpro
esses are put.publi
 
lass Semaphore {private int 
ounter; private JSimHead queue; // ...The P operation de
rements the 
ounter if it is positive or blo
ks (passivates)the 
alling pro
ess and inserts it at the end of the queue if it is non-positive:if (
ounter > 0) 
ounter--; else { // ...link = new JSimLink(
allingPro
ess); link.into(queue);
allingPro
ess.passivate2(); } // else, ...The V operation in
rements the 
ounter if the queue is empty (no otherpro
ess is entering the 
riti
al se
tion) or takes a blo
ked pro
ess from the queueand restarts it. V():if (queue.empty()) 
ounter++; else {firstLink = queue.first();firstPro
ess = (SemPro
ess) firstLink.getData();firstPro
ess.a
tivate(myParent.getCurrentTime());firstLink.out(); firstLink = null; } // else, ...Pro
esses. Pro
esses are a
tive obje
ts, therefore they have to be inheritedfrom JSimPro
ess. They share an instan
e of SharedData (updated inside the
riti
al se
tion) and a semaphore { instan
e of Semaphore.publi
 
lass SemPro
ess extends JSimPro
ess { // ...private Semaphore sem; private SharedData data; // 
onstr., ...The life() method is very simple. An in�nite while 
y
le 
ontains boththe `lo
al blo
k' and the 
riti
al se
tion prote
ted by the semaphore. Real 
om-putation in every blo
k is repla
ed with a 
all to hold() with an exponentiallydistributed random time as parameter. life():3 They will be in
luded in a future version of J-Sim.



while (true) {/* Lo
al part */ myResult = JSimSystem.negExp(0.1);hold(JSimSystem.negExp(lambda));/* Criti
al se
tion */ sem.P(this);data.setResult(0.99*data.getResult() + 0.01*myResult);data.in
CountCS(); hold(JSimSystem.negExp(mu));sem.V(); } // while, ...Results. The simulation was run �ve times, with simulation time limit of 30000time units. The results are shown in table 3.Table 3. Results Obtained by the Program { Chara
teristi
s of the Two-Pro
ess Sys-tem with One Criti
al Se
tion1 2 3 4 5 Average Theor. ResultMean number of loops 8951 9027 9061 9064 8966 9014 9000Mean time of loops 3.3515 3.3233 3.3109 3.3098 3.3458 3.3283 3:�3Mean freq. of loops 0.2984 0.3009 0.3020 0.3021 0.2989 0.3005 0.3Performan
e de
rease 1.1172 1.1078 1.1036 1.1033 1.1153 1.1094 1:�1Con
lusionIn this arti
le, some basi
 fa
ts about J-Sim have been presented, in
ludingits theoreti
al ba
kground. Being written in Java, a popular and easy-to-learnlanguage, J-Sim should be
ome at least as wide-spread as C-Sim, its prede
essor.In the distribution pa
kage, there are in
luded sour
e texts, 
ompiled 
lasses,do
umentation and many examples. Today, J-Sim is a fully fun
tional librarywhi
h has been tested thoroughly, e.g. on the examples in
luded in the pa
kage.J-Sim is available for free at [1℄.Referen
es1. J-Sim Home Page: www.j-sim.z
u.
z2. C-Sim Home Page: www.
-sim.z
u.
z3. Hlavi�
ka, J. - Ra
ek, S. - Herout, P.: C-Sim v.4.1, Resear
h Report DC-99-09, DCSECTU Prague Publishing, Cze
h Republi
, 19994. Holmevik, J.R.: The History of Simula,java.sun.
om/people/jag/SimulaHistory.html5. Desmo-J Home Page: www.desmoj.de6. simjava Home Page: www.d
s.ed.a
.uk/home/hase/simjava7. sim tool Home Page: monar
.web.
ern.
h/MONARC/sim toolA
knowledgementThis resear
h was supported by the grant of the Ministry of Edu
ation of theCze
h Republi
, No. MSM-235200005 { Information Systems and Te
hnologies.


