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Preface

Operating systems are an essential part of any computer system. Similarly,
a course on operating systems is an essential part of any computer-science
education. This fidd is undergoing rapid change, as computers are now
prevalent in virtually every application, from games for children through the
most sophisticated planning tools for governments and multinational firms.
Ye the fundamental concepts remain fairly clear, and it is on these that we base
this book.

Wewrotethisbook asatext for anintroductory coursein operating systems
at thejunior or senior undergraduate level or at the first-year graduate level.
We hopethat practitionerswill also find it useful. It providesaclear description
of the concepts that underlie operating systems. As prerequisites, we assume
that the reader is familiar with basic data structures, computer organization,
and a high-level language, such as C. The hardware topics required for an
understanding of operating systems are included in Chapter 1. For code
examples, we use predominantly C, with some Java, but the reader can ill
understand the algorithms without a thorough knowledge of these languages.

Concepts are presented using intuitive descriptions. |mportant theoretical
results are covered, but forma proofs are omitted. The bibliographical notes
contain pointers to research papers in which results were first presented and
proved, aswell as referencesto material for further reading. In place of proofs,
figures and examples are used to suggest why we should expect the result in
question to be true.

The fundamental concepts and algorithms covered in the book are often
based on those used in existing commercial operating systems. Our aim
is to present these concepts and algorithms in a general setting that is
not tied to one particular operating system. We present a large number of
examples that pertain to the most popular and the most innovative operating
systems, including Sun Microsystems Solaris; Linux; Mach; Microsoft MSDOS
WindowsNT, Windows2000, andWindowsXP, DEC VMS and TOPS-20; IBM OS/2;
and AppleMac OSX. '

In thistext, when we refer to Windows XP as an example operating system,
we are implying both Windows XP and Windows 2000. If a feature exists in
Windows XP that isnot available in Windows 2000, wewill state thisexplicitly.

vii
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If a feature exigts in Windows 2000 but not in Windows XP, then we wili refer
specificdly to Windows 2000.

Organization of This Book

The organization of this text reflects our many years of teaching operating
systems courses. Consideration was aso given to the feedback provided by
the reviewers of the text, as well as comments submitted by readers of earlier
editions. In addition, the content of the text corresponds to the suggestions
from Computing Curricula 2001 for teaching operating systems, published by
the Joint Task Force of the IEHE Computing Society and the Association for
Computing Machinery (ACM).

Onthe supporting web page for thistext, we provide several sample syllabi
that suggest various approaches for using the text in both introductory and
advanced operating systems courses. Asagenera rule, we encourage readers
to progress sequentialy through the chapters, as this strategy provides the
most thorough study of operating systems. However, by using the sample
gyllabi, a reader can sdect a different ordering of chapters (or subsections of
chapters).

Content of This Book

The text is organized in eight mgor parts:

» Overview. Chapters 1 and 2 explain what operating systems are, what
they do, and how they aredesigned and constr ucted. They discusswhat the
common features of an operating system are, what an operating system
does for the user, and what it does for the computer-system operator. The
presentation ismotivational and explanatory in nature. Wehaveavoided a
discussion of how things are done internaly in these chapters. Therefore,
they are suitable for individual readers or for studentsin lower-level classes
who want to learn what an operating system is without getting into the
details of the internal algorithms.

* Process management. Chapters 3 through 7 describe the process concept
and concurrency as the heart of modern operating systems. A process
is the unit of work in a system. Such a system consists of a collection
of concurrently executing processes, some of which are operating-system
processes (those that execute system code) and the rest of which are user
processes (those that execute user code). These chapters cover methods for
process scheduling, interprocess communication, process synchronization,
and deadlock handling. Also included under this topic is a discussion of
threads.

* Memory management. Chapters 8 and 9 deal with main memory man-.
agement during the execution of a process. To improve both the utilization
of the CRU and the speed of its response to its users, the computer must
keep severa processes in memory. There are many different memory-
management schemes, reflecting various approaches to memory man-
agement, and the effectiveness of a particular agorithm depends on the
Situation.
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» Storagemanagement. Chapters10through 13 describehow thefilesystem,
meass storage, and 170 are handled in a modern computer system. The
file system provides the mechanism for on-line storage of and access to
both data and programs residing on the disks. These chapters describe
the dassc internal agorithms and structures of storage management.
They provide a firm practical understanding of the algorithms used—
the properties, advantages, and disadvantages. Since the 1/0 devices that
attach to a computer vary widely, the operating system needs to provide -
a wide range of functiondity to applications to alow them to control al
aspects of the devices. We discuss system 1/0 in depth, including 1/0
system design, interfaces, and internal system structures and functions.
In many ways, 1/0 devices are aso the dowest mgor components of
the computer. Because they are a performance bottleneck, performance
issues are examined. Matters related to secondary and tertiary storage are
explained aswell.

e Protection and security. Chapters 14 and 15 discuss the processesin an
operating system that must be protected from one another's activities.
For the purposes of protection and security, we use mechanisms that
ensure that only processes that have gained proper authorization from
the operating system can operate on the files, memory, CRU, and other
resources. Protection isamechanism for controlling the access of programs,
processes, or users to the resources defined by a computer system. This
mechanism must provide a means of specifying the controlsto be imposed,
aswell asameans of enforcement. Security protects the information stored
in the system (both data and code), as well as the physical resources of
the computer system, from unauthorized access, malicious destruction or
alteration, and accidenta introduction of inconsistency.

¢ Didributed systems. Chapters 16 through 18 deal with a collection of
processors that do not share memory or aclock—a distributed system. By
providing the user with access to the various resources that it maintains, a
distributed system can improve computation speed and data availability
and reiability. Such a system aso provides the user with a distributed file
system, which is a file-service system whose users, servers, and storage
devicesaredispersed among the sites of adistributed system. A distributed
system must provide various mechanisms for process synchronization and
communication and for dealing with the deadlock problem and a variety
of failures that are not encountered in a centralized system.

s Special-pur pose systems. Chapters 19 and 20 deal with systems used for
specific purposes, including rea-time systems and multimedia systems.
These systems have specific requirements that differ from those of the
genera-purpose systems that are the focus of the remainder of the text.
Redl-time systems may require not only that computed results be "correct”
but also that the results be produced within a specified deadline period.
Multimedia systems require quality-of-service guarantees ensuring that
the multimedia data are delivered to clients within a specific time frame,

s Case studies. Chapters 21 through 23 in the book, and Appendices A
through C on thewebsite, integrate the concepts described in thisbook by
describing real operating systems. These systemsinclude Linux, Windows
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XP, FreeBSD, Mach, and Windows 2000. We chose Linux and F&BD
because UNIX—at one time—was almost small enough to understand
yet was not a "toy" operating system. Most of itsinternal algorithms were
selected for smplicity, rather than for speed or sophistication. Both Linux
and FeBD are readily available to computer-science departments, so
many students have access to these systems. We chose Windows XP and
Windows 2000 because they provide an opportunity for us to study a
modern operating system with a design and implementation drastically
different from those of UNIX. Chapter 23 briefly describes a few other
influential operating systems.

Operating-System Environments

This book uses examples of many real-world operating systems to illustrate
fundamental operating-system concepts. However, particular attention ispaid
to the Microsoft family of operating systems (including Windows NT, Windows
2000, and Windows XP) and various versions of UNIX (including Solaris, BSD,
and Mac OS X). We also provide a significant amount of coverage of the Linux
operating system reflecting the most recent version of the kernel— Version 2.6
--at the time this book was written.

The text also provides several example programs written in C and

Java. These programs are intended to run in the following programming
environments:

Windows systems. The primary programming environment for Windows
systems is the Win32 AR (application programming interface), which pro-
vides a comprehensive set of functions for managing processes, threads,
memory, and peripheral devices. We provide several C programsillustrat-
ing the use of the Win32 APl. Example programs were tested on systems
running Windows 2000 and Windows XP.

» POSIX. POSIX (which stands for Portable Operating System Interface) repre-

sents a set of standards implemented primarily for UNIX-based operating
systems. Although Windows XP and Windows 2000 systems can also run
certain FOSX programs, our coverage of FOSX focuses primarily on UNIX
and Linux systems. POSIX-compliant systems must implement the FOSX
core standard (POSIX.1)—Linux, Solaris, and Mac OS X are examples of
POSIX-compliant systems. PFOSX also defines several extensions to the
standards, including real-time extensions (POsIx1.b) and an extension for
athreads library (POSIXI.c, better known as Pthreads). We provide several
programming exampleswritten in Cillustrating the FOSX base AR, as well
as Pthreads and the extensions for real-time programming. These example
programs were tested on Debian Linux 2.4 and 2.6 systems, Mac OS X, and
Solaris 9 using the gecc 3.3 compiler. -

e Java. Javais a widely used programming language with a rich AR and

built-in language support for thread creation and management. Java
programs run on any operating system supporting a Java virtual machine
(or 7vM). Weiillustrate various operating system and networking concepts
with several Java programs tested using the Java 14 WM.
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We have chosen these three programming environments because it,is our
opinion that they best represent the two most popular models of operating
systems: Windows and UNIX/Linux, along with the widely used Java environ-
ment. Most programming examples are written in C, and we expect readers to
be comfortable with this language; readers familiar with both the C and Java
languages should easily understand most programs provided in this text.

In some instances—such as thread creation—we illustrate a specific
concept using al three programming environments, alowing the reader *
to contrast the three different libraries as they address the same task. In
other situations, we may use just one of the APIs to demonstrate a concept.
For example, we illustrate shared memory using just the POSIX API; socket
programming in TCP/IP is highlighted using the Java AP.

The Seventh Edition

Aswewrote this seventh edition of Operating System Concepts, we were guided
by the many comments and suggestions we received from readers of our
previous editions, as well as by our own observations about the rapidly
changing fields of operating systems and networking. We have rewritten the
material in most of the chapters by bringing older material up to date and
removing material that was no longer of interest or relevance.

We have made substantive revisions and organizational changesin many of
the chapters. Most importantly, we have completely reorganized the overview
material in Chapters 1 and 2 and have added two new chapters on specia-
purpose systems (real-time embedded systems and multimedia systems).
Because protection and security have become more prevalent in operating
systems, we now cover these topics earlier in the text. Moreover, we have
substantially updated and expanded the coverage of security.

Bedow, we provide a brief outline of the mgor changes to the various
chapters:

» Chapter 1, Introduction, has been totally revised. In previous editions, the
chapter gave a historical view of the development of operating systems.
The new chapter provides a grand tour of the major operating-system
components, along with basic coverage of computer-system organization.

e Chapter 2, Operating-System Structures, is a revised version of old
Chapter 3, with many additions, including enhanced discussions of system
calls and operating-system structure. It also provides significantly updated
coverage of virtual machines.

» Chapter 3, Processes, isthe old Chapter 4. It includes new coverage of how
processes are represented in Linux and illustrates process creation using
both the ROSX and Win32 APIs. Coverage of shared memory is enhanced
with a program illustrating the shared-memory AR available for FOSX
systems.

» Chapter 4, Threads, isthe old Chapter 5. The chapter presents an enhanced
discussion of thread libraries, including the FOSX, Win32 AP1, and Java
thread libraries. It also provides updated coverage of threading in Linux.
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Chapter 5, CRU Scheduling, is the old Chapter 6. The chapter offers a
significantly updated discussion of scheduling issues for multiprocessor
systems, including processor affinity and load-balancing algorithms. It
also features a new section on thread scheduling, including Pthreads, and
updated coverage of table-driven scheduling in Solaris. The section on
Linux scheduling has been revised to cover the scheduler used in the 2.6
kernel.

Chapter 6, Process Synchronization, is the old Chapter 7. We have
removed the coverage of two-process solutions and now discuss only
Peterson's solution, as the two-process algorithms are not guaranteed to
work on modern processors. The chapter also includes new sections on
synchronization in the Linux kernel and in the Pthreads AR.

Chapter 7, Deadlocks, is the old Chapter 8. New coverage includes
a program example illustrating deadlock in a multithreaded Pthread
program.

Chapter 8, Main Memory, is the old Chapter 9. The chapter no longer
covers overlays. In addition, the coverage of segmentation has seen sig-
nificant modification, including an enhanced discussion of segmentation
in Pentium systems and a discussion of how Linux is designed for such
segmented systems.

Chapter 9, Virtual Memory, is the old Chapter 10. The chapter features
expanded coverage of motivating virtual memory as well as coverage
of memory-mapped files, including a programming example illustrating
shared memory (via memory-mapped files) using the Win32 AF. The
details of memory management hardware have been modernized. A new
section on allocating memory within the kernel discusses the buddy
algorithm and the slab allocator.

Chapter 10, File-System Interface, is the old Chapter 11. It has been
updated and an example of Windows XP ACLs has been added.

Chapter 11, File-System I mplementation, isthe old Chapter 12. Additions
include a full description of the WARL file system and inclusion of Sun's
ZFSfile system.

Chapter 12, Mass-Storage Structure, is the old Chapter 14. New is the
coverage of modern storage arrays, including new RAID technology and
features such as thin provisioning.

Chapter 13, I/0O Systems, is the old Chapter 13 updated with coverage of
new material.

Chapter 14, Protection, is the old Chapter 18 updated with coverage of the
principle of least privilege.

Chapter 15, Security, is the old Chapter 19. The chapter has undergone -
a major overhaul, with all sections updated. A full example of a buffer-
overflow exploit is included, and coverage of threats, encryption, and
security tools has been expanded.

Chapters 16 through 18 are the old Chapters 15 through 17, updated with
coverage of new material.
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* Chapter 19, Real-Time Systems, is a new chapter focusing on real-time
and embedded computing systems, which have requirements different
from those of many traditional systems. The chapter provides an overview
of real-time computer systems and describes how operating systems must
be constructed to meet the stringent timing deadlines of these systems.

» Chapter 20, Multimedia Systems, isanew chapter detailing devel opments
in the relatively new area of multimedia systems. Multimedia data differ .
from conventional data in that multimedia data—such as frames of video
—must be delivered (streamed) according to certain timerestrictions. The
chapter explores how these requirements affect the design of operating
systems.

* Chapter 21, The Linux System, is the old Chapter 20, updated to reflect
changes in the 2.6 kernel—the most recent kernel at the time this text was
written.

» Chapter 22, XP, has been updated.
o Chapter 22, Influential Operating Systems, has been updated.

The old Chapter 21 (Windows 2000) has been turned into Appendix C. Asin
the previous edition, the appendices are provided online.

Programming Exercises and Projects

To emphasize the concepts presented in the text, we have added several
programming exercises and projects that use the POSIX and Win32 APisas well
as Java. We have added over 15 new programming exercises that emphasize
processes, threads, shared memory, process synchronization, and networking.
In addition, we have added several programming projects which are more
involved than standard programming exercises. These projects include adding
asystem cdl to the Linux kernel, creating a UNIX shell using the fork() system
cal, a multithreaded matrix application, and the producer-consumer problem
using shared memory.

Teaching Supplements and Web Page

Theweb page for the book contains such material asa set of slidesto accompany
the book, model course syllabi, adl C and Java source code, and up-to-date
errata. The web page also contains the book's three case-study appendices and
the Distributed Communication appendix. The URL is:

http://www.os-book.com

New to this edition is a print supplement caled the Student Solutions
Manual. Included are problems and exercises with solutions not found in
the text that should help students master the concepts presented. You can
purchase a print copy of this supplement at Wiley's website by going to
http://www.wiley.com/college/silberschatz and choosing the Student Solu-
tions Manual link.
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To obtain restricted supplements, such asthe solution guide to the exercises
in the text, contact your local John Wiley & Sons sales representative. Note that
these supplements are avaialble only to faculty who use this text. You can
find your representative at the "Find a Rep?' web page: http://www.jsw-
edcv.wiley.com/college/findarep.

Mailing List

We have switched to the mailman system for communication among the users
of Operating System Concepts. If you wish to use this facility, please visit the
following URL and follow the instructions there to subscribe:

http://mailman.cs.yal e.edu/mail man/listinfo/os-book-list

The mailman mailing-list system provides many benefits, such as an archive
of postings, as well as several subscription options, including digest and Web
only. To send messages to the list, send e-mail to:

0s-book-list@cs.yale.edu

Depending on the message, we will either reply to you personally or forward
the message to everyone on the mailing list. The list is moderated, so you will
receive no inappropriate mail.

Students who are using this book as a text for class should not use the list
to ask for answers to the exercises. They will not be provided.

Suggestions

We have attempted to clean up every error in this new edition, but—as
happens with operating systems—a few obscure bugs may remain. We would
appreciate hearing from you about any textual errors or omissions that you
identify.

If you would like to suggest improvements or to contribute exercises,
we would aso be glad to hear from you. Please send correspondence to
0s-book@cs.vale.edu.
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2PC protocol, see two-phase commit
protocol

|IOBaseT Ethernet, 619

16-bit Windows environment, 812

32-bit Windows environment, 812-813

100BaseT Ethernet, 619

A

aborted transactions, 222
absolute code, 278
absolute path names, 390
abdract data type, 375
access:
anonymous, 398
controlled, 402-403
file, sec file access
access control, in Linux, 778-779
access-control list (ACL), 403
access latency, 484
access lists (NFS V4), 656
access matrix, 538-542
and access control, 545-546
defined, 538
implementation of, 542-545
and revocation of access rights,
546-547
access rights, 534, 546-547
accounting (operating system service),
41
accreditation, 602
ACL (access-control list), 403
active array (Linux), 752

Active Directory (Windows XP),
active list, 685
acyclic graph, 392
acyclic-graph directories, 391-394
adaptive mutex, 218-219
additional-reference-bits algorithm, 336
additional sense code, 515
additional sense-code qualifier, 515
address(es):
defined, 501
Internet, 623
linear, 306
logicd, 279
physical, 279
virtual, 279
address binding, 278-279
address resolution protocol (ARP), 636
address space:
logicd vs. physical, 279-280
virtual, 317, 760-761
address-gpace identifiers (ASIDs),
293-294
administrative complexity, 645
admission control, 721, 729
admission-control algorithms, 704
advanced encryption sandard (AES),
579
advanced technology attachment (ATA)
buses, 453
advisory file-locking mechanisms, 379
AES (advanced encryption standard),
579
affinity, processor, 170

887
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aging, 163-164, 636
allocation:
buddy-system, 354-355
of disk space, 421-429
contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423425
and performance, 427-429
equal, 341
as problem, 384
proportional, 341
dab, 355-356
analytic evaluation, 181
Andrew file system (AFS), 653-659
file operations in, 657-658
implementation of, 658-659
shared name space in, 656-657
anomaly detection, 595
anonymous access, 398
anonymous memory, 467
APCs, see asynchronous procedure calls
API, s application program interface
Apple Computers, 42
AppleTalk protocol, 824
Application Domain, 69
application interface (/O systems),
505-511
block and character devices, 507-508
blocking and nonblocking 1/0,
510-511
clocks and timers, 509-510
network devices, 508-509
application layer, 629
application programs, 4
disinfection dof, 596-597
multistep processing of, 278, 279
processes vs,, 21
system utilities, 55-56
application program interface (API),
44-46
application proxy firewalls, 600
arbitrated loop (FC-AL), 455
architecture(s), 12-15
clustered systems, 14-15
multiprocessor systems, 12-13
single-processor systems, 12-14
of Windows XP, 787-788
architecture state, 171
archived to tape, 480

areal dendty, 492
argument vector, 749
armored viruses, 571
ARP (address resolution protocol), 636
arrays, 316
ASIDs, s address-space identifiers
assignment edge, 249
asymmetric clustering, 15
asymmetric encryption, 580
asymmetric multiprocessing, 13, 169
asynchronous devices, 506, 507
asynchronous (nonblocking) message
passing, 102
asynchronous procedure calls (APCs),
140-141, 790-791
asynchronous thread cancellation, 139
asynchronous writes, 434
ATA buses, 453
Atlas operating system, 845-846
atomicity, 669-672
atomic transactions, 198, 222-230
and checkpoints, 224-225
concurrent, 225-230
and locking protocols,
227-228
and seridizability, 225-227
and timestamp-based
protocols, 228-230
system model for, 222-223
write-ahead logging of, 223-224
attacks, 560. S also denial-of-service
attacks
man-in-the-middle, 561
replay, 560
zero-day, 595
attributes, 815
authentication:
breaching of, 560
and encryption, 580-583
in Linux, 777
two-factor, 591
in Windows, 814
automatic job sequencing, 841
automatic variables, 566
automatic work-set trimming (Windows
XP), 363
automount feature, 645
autopraobes, 747
auxiliary rights (Hydra), 548



back door, 507
background processes, 166
backing store, 282
backups, 436
bad blocks, 464-465
bandwidth:
disk, 457
effective, 484
sustained, 484
banker's algorithm, 259-262
base file record, 815
base register, 276, 277
basic file systems, 412
batch files, 379
batch interface, 41
Bayes theorem, 596
Belady's anomaly, 332
best-fit Srategy, 287
biased protocol, 674
binary semaphore, 201
binding, 278
biometrics, 591-592
bit(s):
mode, 18
modify (dirty), 329
reference, 336
valid-invalid, 295-296
bit-interleaved parity organization,
472
bit-level striping, 470
bit vector (bit map), 429
black-box transformations, 579
blade servers, 14
block(s), 47, 286, 382
bad, 464-465
boot, 71, 463-464
boot control, 414
defined, 772
direct, 427
file-control, 413
index, 426
index to, 384
indirect, 427
logical, 44
volume control, 414
block ciphers, 579
block devices, 506-508, 771-772

block groups, 767
blocking, indefinite, 163
blocking IO, 510-511
blocking (synchronous) message
passing, 102
block-interleaved distributed parity,
473
block-interleaved parity organization,
472473
block-level striping, 470
block number, reative, 383-384
boot block, 71, 414, 463464
boot contral block, 414
boot disk (system disk), 72, 464
booting, 71-72, 810-811
boot partition, 464
boot sector, 464
bootstrap programs, 463-464, 573
bootstrap programs (bootstrap loaders),
6,7, 71
boot viruses, 569
bottom half interrupt service routines,
755
bounded-buffer problem, 205
bounded capacity (of queue), 102
breach of availability, 560
breach of confidentiality, 560
breach of integrity, 560
broadcasting, 636, 725
B+ tree (NTFS), 816
buddy heap (Linux), 757
buddy system (Linux), 757
buddy-system allocation, 354-355
buffer, 772
areular, 438
defined, 512
buffer cache, 433
buffering, 102, 512-514, 729
buffer-overflow attacks, 565-568
bully algorithm, 684-685
bus, 453
defined, 496
expansion, 496
PCl, 496
bus architecture, 11
bus-mastering I/0 boards, 503
busy waiting, 202, 499
bytecode, 68
Byzantine generals problem, 686
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C

cache
buffer, 433
defined, 514
in Linux, 758

as memory buffer, 277
nonvolatile RAM, 470
page, 433
and performance improvement, 433
and remote file access:
and consistency, 649-650
location of cache, 647-648
update policy, 648, 649
dabsin, 355
unified buffer, 433, 434
in Windows XP, 806-808
cache coherency, 26
cache-consistency problem, 647
cachefs file system, 648
cache management, 24
caching, 24-26, 514
client-side, 827
double, 433
remote service vs., 650-651
write-back, 648
callbacks, 657
Cambridge CAP system, 549-550
cancdlation, thread, 139
cancdlation points, 139
capability(-ies), 543, 549
capability-based protection systems,
547-550
Cambridge CAP system, 549-550
Hydra, 547-549
capability lists, 543
carrier sense with multiple access
(CSMA), 627-628
cascading termination, 95
CAV (congtant angular velocity), 454
CD, see collison detection
central processing unit, sse under CPU
certificate authorities, 584
certification, 602
challenging (passwords), 590
change journal (Windows XP), 821
character devices (Linux), 771-773
character-gream devices, 506-508
checkpoints, 225
checksum, 637

child processes, 796
children, 90
CIFS (common internet file system), 399
CineBlitz, 728-730
cipher-block chaining, 579
circuit switching, 626-627
circular buffer, 438
circular SCAN (C-SCAN) scheduling
algorithm, 460
circular-wait condition (deadlocks),
254-256
claim edge, 258
classes (Java), 553
class loader, 68
CLI (command-line interface), 41
C library, 49
client(s):
defined, 642
diskless, 644
in S, 586
client interface, 642
client-server model, 398-399
client-side caching (CSC), 827
client systems, 31
clock, logical, 665
clock algorithm, see second-chance page-
replacement algorithm
clocks, 509-510
C-LOOK scheduling algorithm, 461
close() operation, 376
clusters, 463, 634, 815
clustered page tables, 300
clustered systems, 14-15
clustering, 634
asymmetric, 15
in Windows XP, 363
cluster remapping, 820
cluster server, 655
CLV (congant linear velocity), 454
code:
absolute, 278
reentrant, 296
code books, 591
collisions (of file names), 420
collision detection (CD), 627-628
COM, see component object model
combined scheme index block, 427
command interpreter, 41-42
command-line interface (CLI), 41
commit protocol, 669
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committed transactions, 222 process management in, 20-21
common internet file system (CIFS), 399 protection in, 26-27
communication(s): secure, 560
direct, 100 security in, 27
in distributed operating systems, special-purpose systems, 29-31
613 handheld systems, 30-31
indirect, 100 multimedia systems, 30
interprocess, see interprocess real-time embedded systems,
communication 29-30
systems programs for, 55 storage in, 8-10
unreliable, 686-687 storage management in, 22-26
communications (operating system caching, 24-26
service), 40 I/0 systems, 26
communication links, 99 mass-storage management,
communication processors, 619 23-24
communications sessions, 626 threats to, 571-572
communication system calls, 54-55 computing, safe, 598
compaction, 288, 422 concurrency control, 672-676
compiler-based enforcement, 550-553 with locking protocols, 672-675
compile time, 278 with timestamping, 675-676
complexity, administrative, 645 concurrency-control algorithms, 226
component object model (COM), conditional-wait construct, 215
825-826 confidentiality, breach of, 560
component units, 642 confinement problem, 541
compression: conflicting operations, 226
in multimedia systems, 718-720 conflict phase (of dispatch latency), 703
in Windows XP, 821 conflict resolution module (Linux),
compression ratio, 718 T47-748
compression units, 821 connectionless messages, 626
computation migration, 616 connectionless (UDP) sockets, 109
computation speedup, 612 connection-oriented (TCP) sockets, 109
computer environments, 31-34 conservative timestamp-ordering
client-server computing, 32-33 scheme, 676
peer-to-peer computing, 33-34 consistency, 649-650
traditional, 31-32 consistency checking, 435-436
Web-based computing, 34 consistency semantics, 401
computer programs, see application constant angular velocity (CAV), 454
programs congtant linear velocity (CLV), 454
computer system(s): container objects (Windows XP), 603
architecture of; contention, 627-628
clustered systems, 14-15 contention scope, 172
multiprocessor systems, 12-13  context (of process), 89
single-processor systems, context switches, 90, 522-523
12-14 contiguous disk space allocation,
distributed systems, 28-29 421-423
file-system management in, 22-23 contiguous memory allocation, 285
1/0 structure in, 10-11 continuous-media data, 716
memory management in, 21-22 - control cards, 49, 842, 843
operating system viewed by, 5 control-card interpreter, 842

operation df, 6-8 controlled access, 402-403
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controller(s), 453, 496497
defined, 496
direct-memory-access, 503
disk, 453
host, 453
control programs, 5
control register, 493
convenience, 3
convoy effect, 159
cooperating processes, 96
cooper ative scheduling, 156
copy-on-write technique, 325-327
copy semantics, 513
core memory, 846
counting, 431
counting-based page replacement
algorithm, 3338
counting semaphore, 201
covert channels, 564
CPU (central processing unit), 4, 275-277
CPU-bound processes, 88-89
CPU burst, 14
CPU clock, 276
CPU-1/O burg cycle, 154-155
CPU scheduler, sec short-term scheduler
CPU scheduling, 17
about, 153-154
algorithms for, 157-169
criteria, 157-158
evaluation of, 181-185
first-come, first-served
scheduling of, 158-159
implementation of, 184-185
multilevel feedback-queue
scheduling dof, 168-169
multilevel queue scheduling
of, 166-167
priority scheduling of, 162-164
round-robin scheduling df,
164-166
shortest-job-first scheduling
of, 159-162
dispatcher, role of, 157
and [/O-CPU burst cycle, 154-155
models for, 181-185
deterministic modeling,
181-182
and implementation, 184-185
queueing-network analysis, 183

simulations, 183-184 -
in multimedia systems, 722-723
multiprocessor scheduling, 169-172
approaches to, 169-170
and load balancing, 170-171
and processor &ffinity, 170
symmetric multithreading,
171-172
preemptive scheduling, 155-156
in real-time systems, 704-710
earliest-deadline-first
scheduling, 707
proportional share
scheduling, 708
Pthread scheduling, 708~710
rate-monotonic scheduling,
705-707
short-term scheduler, role of, 155
crackers, 560
creation:
of files, 375
process, 90-95
critical sections, 193
critical-section problem, 193-195
Peterson's solution to, 195-197
and semaphores, 200-204
deadlocks, 204
implementation, 202-204
starvation, 204
usage, 201
and synchronization hardware,
197-200
cross-link trust,
cryptography, 576-587
and encryption, 577-584
implementation of, 584—5%
SS9 example df, 585-587
CSC (client-side caching), 827
C-SCAN scheduling algorithm, 460
CSMA, see carrier sense with multiple
access
CTSS operating system, 849
current directory, 390
current-file-position pointer, 375
cycles:
in CineBlitz, 728
CPU-1/0O burst, 154-155
cycle stealing, 504
cylinder groups, 767
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d (page offseat), 289
daemon process, 536
daisy chain, 496
data:
multimedia, 30
recovery df, 435-437
thread-specific, 142
database systems, 222
data capability, 549
data-encryption standard (DES), 579
data files, 374
data fork, 381
datagrams, 626
data-in register, 498
data-link layer, 629
data loss, mean time to, 469
data migration, 615-616
data-out register, 498
data section (of process), 82
data striping, 470
DCOM, 826
DDOS attacks, 560
deadline I/O scheduler, 772
deadlock(s), 204, 676-683
avoidance of, 252, 256-262
with banker's algorithm,
259-262
with resource-alocation-graph
algorithm, 258-259
with safe-gtate algorithm,
256-258
defined, 245
detection of, 262-265, 678-683
algorithm usage, 265
severd instances of a
resource type, 263-265
single instance of each
resource type, 262-263
methods for handling, 252-253
with mutex locks, 247-248
necessary conditions for, 247-249
prevention/avoidance of, 676-678
prevention of, 252-256
and circular-wait condition,
254-256
and hold-and-wait condition,
253-254
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and mutual-exclusion
condition, 253
and no-preemption condition,
24
recovery from, 266-267
by process termination, 266
by resource preemption, 267
system model for, 245-247
system resource-allocation graphs
for describing, 249-251
deadlock-detection coordinator, 679
debuggers, 47, 48
dedicated devices, 506, 507
default signal handlers, 140
deferred procedure calls (DPCs), 791
deferred thread cancellation, 139
degree of multiprogramming, 88
dday, 721
delay-write policy, 648
delegation (NFS Vv4), 653
deletion, file, 375
demand paging, 319-325
basic mechanism, 320-322
defined, 319
with inverted page tables, 359-360
and 1/0 interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure, 360-361
pure, 322
and restarting instructions, 322-323
and TLB reach, 358-359
demand-zero memory, 760
demilitarized zone (DMZ), 599
denial-of-service (DOS) attacks, 560,
575-576
density, areal, 492
dentry objects, 419, 765
DES (data-encryption standard), 579
design of operating systems:
distributed operating systems,
633-636
goals, 56
Linux, 742-744
mechanisms and policies, 56-57
Windows XP, 785-787
desktop, 42
deterministic modeling, 181-182

7
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development kernels (Linux), 739
device controllers, 6, 518. Seealso 1,0
systems
device directory, 386. See also directories
device drivers, 10, 11, 412, 496, 518, 842
device-management system calls, 53
device queues, 86-87
device reservation, 514-515
DFS, see distributed file system
digital certificates, 583-584
digital signatures, 532
digital-signature algorithm, 582
dining-philosophers problem, 207-209,
212-214
direct access (files), 383-384
direct blocks, 427
direct communication, 100
direct 1/0, 508
direct memory access (DMA), 11, 503-504
direct-memory-access (DMA) controller,
503
directories, 385-387
acyclic-graph, 391-394
genera graph, 394-395
implementation of, 419—40
recovery of, 435-437
single-level, 387
tree-structured, 389-391
two-level, 388-389
directory objects (Windows XP), 794
direct virtual memory access (DVMA),
504
dirty bits (modify bits), 329
disinfection, program, 596-597
disk(s), 451453. Seealso mass-storage
structure
alocation of space on, 421-429
contiguous allocation, 421-423
indexed allocation, 425-427
linked allocation, 423-425
and performance, 427429
bad blocks, 46446
boot, 72, 464
boot block, 463-464
efficient use df, 431
electronic, 10
floppy, 452-453
formatting, 462-463
free-gpace management for, 429-431
host-attached, 455

low-level formatted, 454 £
magnetic, 9
magneto-optic, 479
network-attached, 456—4%
performance improvement for,
432-435
phase-change, 479
raw, 339
read-only, 480
read-write, 479
removable, 478-480
scheduling algorithms, 456462
C-SCAN, 460
FCFS, 457-458
LOOK, 460-461
SCAN, 459-460
selecting, 461-462
SSTF, 458-459
solid-state, 24
storage-area network, 456
structure of, 454
system, 464
WORM, 479
disk arm, 452
disk controller, 453
diskless clients, 644
disk mirroring, 820
disk scheduling:
CineBlitz, 728
in multimedia systems, 723-724
disk dtriping, 818
digpatched process, 87
dispatcher, 157
dispatcher objects, 220
Windows XP, 790
in Windows XP, 793
digpatch latency, 157, 703
distributed coordination:
and atomicity, 669-672
and concurrency control, 672-676
and deadlocks, 676-683
detection, 678-683
prevention/avoidance,
676-678
election algorithms for, 683-686
and event ordering, 663-666
and mutual exclusion, 666-668
reaching algorithms for, 686-683
distributed denial-of-service (DDOYS)
attacks, 560



distributed file system (DFS), 398
statel ess, 401
Windows XP, 827
distributed file systems (DFSs), 641-642
AFS example of, 653-659
file operations, 657-658
implementation, 658-659
shared name space, 666—66/7
defined, 641
naming in, 643-646
remote file access in, 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648,
649
and caching vs. remote
service, 650-651
and consistency, 649-650
replication of files in, 652-653
stateful vs. stateless service in,
651-652
digtributed information systems
(digtributed naming services),
399
distributed lock manager (DLM), 15
distributed naming services, se
distributed information systems
distributed operating systems, 615-617
distributed-processing mechanisms,
824-826
digtributed systems, 28-29
benefits of, 611-613
defined, 611
distributed operating systems as,
615-617
network operating systems as,
613-615
DLLs, see dynamic link libraries
DLM (distributed lock manager), 15
DMA, see direct memory access
DMA controller, see direct-memory-
access controller
DMZ (demilitarized zone), 599
domains, 400, 827-828
domain-name system (DNS), 399, 623
domain switching, 535
domain trees, 827
DOS attacks, see denial-of-service attacks
double buffering, 513, 729
double caching, 433
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double indirect blocks, 427 5

downsizing, 613

down time, 422

DPCs (deferred procedure calls), 791

DRAM, see dynamic random-access
memory

driver end (STREAM), 520

driver registration module (Linux),
746747

dual-booted systems, 417

dumpster diving, 562

duplex set, 820

DVMA (direct virtual memory access),
504

dynamic linking, 764

dynamic link libraries (DLLS), 281-282,
787

dynamic loading, 280-281

dynamic priority, 722

dynamic protection, 534

dynamic random-access memory
(DRAM), 8

dynamic routing, 625

dynamic storage-allocation praoblem,
286, 422

earliest-deadline-first (EDF) scheduling,
707, 723

ease of use, 4, 784

ECC, see error-correcting code

EDF scheduling, see earliest-deadline-
firg scheduling

effective access time, 323

effective bandwidth, 484

effective memory-access time, 24

effective UID, 27

efficiency, 3, 431-432

EIDE buses, 453

election, 628

election algorithms, 683-686

dectronic disk, 10

elevator algorithm, sse SCAN scheduling.
algorithm

embedded systems, 696

encapsulation (Java), 555

encoded files, 718

encrypted passwords, 589-590

encrypted viruses, 570
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encryption, 577-584
asymmetric, 530
authentication, 580-583
key distribution, 583-584
symmetric, 579-580
Windows XP, 821
enhanced integrated drive eectronics
(EIDE) buses, 453
entry section, 193
entry set, 218
environmental subsystems, 786-787
environment vector, 749
EPROM (erasable programmable read-
only memory), 71
equal allocation, 341
erasable programmable read-only
memory (EPROM), 71
error(s), 515
hard, 465
soft, 463
eror conditions, 316
error-correcting code (ECC), 462, 471
eror detection, 40
escalate privileges, 27
escape (operating systems), 507
events, 220
event latency, 702
event objects (Windows XP), 790
event ordering, 663-666
exceptions (with interrupts), 501
exclusive lock mode, 672
exclusive locks, 378
execO system call, 133
executable files, 82, 374
execution of user programs, 762-764
execution time, 278
exit section, 193
expansion bus, 496
expired array (Linux), 752
expired tasks (Linux), 752
exponential average, 161
export list, 441-442
ext2fs, see second extended file system
extended file system, 413, 766
extent (contiguous space), 423
extents, 815
external data representation (XDR),
112
external fragmentation, 287-288, 422

F s

failure
detection of, 631-633
mean time to, 468
recovery from, 633
during writing of block, 477-478
failure handling (2PC protocol),
670-672
failure modes (directories), 400-401
fair share (Solaris), 176
false negatives, 595
false positives, 595
fast 170 mechanism, 807
FAT (file-allocation table), 425
fault tolerance, 13, 634, 818-821
fault-tolerant systems, 634
FC (fiber channdl), 455
FC-AL (arbitrated loop), 455
FCB (file-control block), 413
FC buses, 453
FCFS scheduling algorithm, see first-
come, first-served scheduling
algorithm
fibers, 832
fiber channe (FC), 455
fiber channd (FC) buses, 453
fids (NFS V4), 656
FIFO page replacement algorithm,
331-333
50-percent rule, 287
file(s), 22, 373-374. See also directories
accessing information on, 382-384
direct access, 383-384
sequential access, 382-383
attributes of, 374-375
batch, 379
defined, 374
executable, 82
extensions of, 379-390
internal structure of, 381-382
locking open, 377-379
operations on, 375-377
protecting, 402-407
via file access, 402-406
via passwords/permissions,
406-407
recovery o, 435-437
storage structure for, 385-386



file access, 377, 402-406
file-allocation table (FAT), 425
file-control block (FCB), 413
file descriptor, 415

file handle, 415

FileL ock (Java), 377

file management, 55
fileemanagement system calls, 53
file mapping, 350

file migration, 643

file modification, 55

file objects, 419, 765
file-organization module, 413
file pointers, 377

file reference, 815

file replication (distributed file systems),

652-654
fileserver systems, 31
file session, 401
file sharing, 397-402
and consistency semantics,
401-402
with multiple users, 397-398
with networks, 398-401
and client-server model,

398-399
and distributed information
systems, 399-400

and failure modes, 400-401
file systems, 373, 411413

basic, 412

creation of, 386

design problems with, 412

distributed, 398, see distributed file
systems

extended, 412

implementation of, 413-419
mounting, 417
partitions, 416-417
virtual systems, 417-419

levels of, 412

Linux, 764-770

log-based transaction-oriented,
437-438

logical, 412

mounting of, 395-397

network, 438-444

remote, 398

WAFL, 444446
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File System Hierarchy Standard
document, 740

file-system management, 22-23

file-system manipulation (operating
system service), 40

file trander, 614-615

file trandfer protocol (FTP), 614-615

file viruses, 569

filter drivers, 806

firewalls, 31, 599-600

firewall chains, 776

firewall management, 776

FireWire, 454

firmware 6, 71

firg-come, firg-served (FCFS
scheduling algorithm, 158-159,
457-458

firg-fit srategy, 287

fixed-partition scheme, 286

fixed priority (Solaris), 176

fixed routing, 625

floppy disks, 452453

flow control, 521

flushing, 2%

folders, 42

footprint, 697

foreground processes, 166

forests, 827-828

fork() and exec() process model (Linux),
748-750

fork() system call, 138

formatting, 462463

forwarding, 465

forward-mapped page tables, 298

fragments, packet, 776

fragmentation, 287-288
external, 287-288, 422
internal 287, 382

frame(s), 289, 626, 716
stack, 566-567
victim, 329

frame allocation, 340-343
equal allocation, 341
global vs. local, 342-343
proportional allocation, 341-342

frame-allocation algorithm, 330

frame pointers, 567

free-behind technique, 435

free objects, 356, 758
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free-gpace list, 429

free-space management (disks), 429-431
bit vector, 429-430
counting, 431
grouping, 431
linked list, 430431

front-end processors, 523

FTP, see file transfer protocol

ftp, 398

full backup, 436

fully distributed deadlock-detection
algorithm, 681-683

G

Gantt chart, 159

garbage collection, 68, 395

gateways, 626

GB (gigabyte), 6

gce (GNU C compiler), 740

GDT (global descriptor table), 306

general graph directories, 394-395

gigabyte (GB), 6

global descriptor table (GDT), 306

global ordering, 665

global replacement, 342

GNU C compiler (gcc), 740

GNU Portable Threads, 130

graceful degradation, 13

graphs, acyclic, 392

graphical user interfaces (GUIs),
41-43

grappling hook, 573

Green threads, 130

group identifiers, 27

grouping, 431

group policies, 828

group rights (Linux), 778

guest operating systems, 67

GUIs, see graphical user interfaces

H

HAL, see hardware-abstraction layer
handheld computers, 5

handheld systems, 30-31

handles, 793, 79%6

handling (of signals), 123
handshaking, 498-499, 518

hands-on computer systems, st
interactive computer systems
happened-before relation, 664-666
hard affinity, 170
hard-coding techniques, 100
hard errors, 465
hard links, 394
hard real-time systems, 696, 722
hardware, 4
1/0 systems, 496-505
direct memory access,
503-504
interrupts, 499-503
polling, 498-499
for storing page tables, 292-294
synchronization, 197-200
hardwar e-abstraction layer (HAL), 787,
788
hardwar e objects, 533
hashed page tables, 300
hash functions, 582
hash tables, 420
hash value (message digest), 582
heaps, 82, 835-836
heavyweight processes, 127
hierarchical paging, 297-300
hierarchical storage management
(HSM), 483
high availability, 14
high performance, 786
hijacking, session, 561
hit ratio, 294, 358
hive, 810
hold-and-wait condition (deadlocks),
253-254
holes, 286
holographic storage, 480
homogeneity, 169
host adapter, 496
hogt-attached storage, 455
host controller, 453
hot spare disks, 475
hot-standby mode, 15
HSM (hierarchical storage
management), 483
human security, 562
Hydra, 547-549
hyper space, 797
hyperthreading technology, 171



IBM OS360, 850-851
identifiers:
file, 374
group, 27
user, 27
idle threads, 177
IDSs, see intrusion-detection systems
IKE protocol, 585
ILM (information life-cycle
management), 483
immutable shared files, 402
implementation:
of CPU scheduling algorithms,
184-185
of operating systems, 57-58
of real-time operating systems,
700-704
and minimizing latency,
702-704
and preemptive kernels, 701
and priority-based
scheduling, 700-701
of transparent naming techniques,
645-646
of virtual machines, 65-66
incremental backup, 436
indefinite blocking (tarvation), 163, 204
independence, location, 643
independent disks, 469
independent processes, 96
index, 384
index block, 426
indexed disk space allocation, 425-427
index root, 816
indirect blocks, 427
indirect communication, 100
information life-cycle management
(ILM), 483
infor mation-maintenance system calls,
53-54
inode objects, 419, 765
input/output, see under 1/0
input queue, 278
InServ storage array, 476
instance handles, 831
ingtruction-execution cycle, 275-276
instruction-execution unit, 811
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instruction register, 8 B
integrity, breach of, 560
intellimirror, 828
Intel Pentium processor, 305-308
interactive (hands-on) computer
systems, 16
interface(s):
batch, 41
client, 642
defined, 505
intermachine, 642
Windows XP networking, 822
interlock, 1/0, 361-362
intermachine interface, 642
internal fragmentation, 287, 382
international use, 787
Internet address, 623
Internet Protocol (1P), 584-585
inter process communication {IPC), 96-102
in client-server systems, 108-115
remote method invocation,
114-115
remote procedure cdls, 111-113
sockets, 108-111
in Linux, 739, 773-774
Mach example of, 105-106
in message-passing systems, 99-102
POSIX shared-memory example df,
103-104
in shared-memory systems, 97-99
Windows XP example of, 106-108
interrupt(s), 7, 499-503
defined, 499
in Linux, 754-755
interrupt chaining, 501
interrupt-controller hardware, 501
interrupt-dispatch table (Windows XP),
792
interrupt-driven data transfer, 353
interrupt-driven operating systems, 17-18
interrupt latency, 702-703
interrupt priority levels, 501
interrupt-request line, 499
interrupt vector, 8, 284, 501
intruders, 560
intrusion detection, 594-596
intrusion-detection systems (IDSs),
594-595
intrusion-prevention systems (IPSs), 595
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inverted page tables, 301-302, 359-360
I/O (input/output), 4, 10-11
memory-mapped, 353
overlapped, 843-845
programmed, 353
I/O-bound processes, 88-89
I/O burgt, 154
1/0 channd, 523, 524
I/O interlock, 361-362
I/O manager, 805-806
I/O operations (operating system
service), 40
1/0 ports, 353
1/O request packet (IRP), 805
/O subsystem(s), 26
kernelsin, 6, 511-518
procedures supervised by, 517-518
O system(s), 495496
application interface, 505-511
block and character devices,
507-508
blocking and nonblocking
I/0, 510-511
clocks and timers, 509-510
network devices, 508-509
hardware, 496-505
direct memory access, 503-504
interrupts, 499-503
polling, 498-499
kernels, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
I1/0O scheduling, 511-512
and I/0 subsystems, 517-518
protection, 515-516
spooling and device
reservation, 514-515
Linux, 770-773
block devices, 771-772
character devices, 772-773
STREAMS mechanism, 520-522
and system performance, 522-525
transformation of requests to
hardware operations, 518-520
IP, see Internet Protocol
IPC, see interprocess communication
IPSec, 585
IPSs (intrusion-prevention systems), 595

IRP (I/O request packet), 800 :
ISCSI, 456

SO protocol stack, 630

ISO Reference Model, 585

J

Java:
file locking in, 377-378
language-based protection in,

553-555

monitors in, 218

Java threads, 134-138

Java Virtual Machine (JVM), 68

JIT compiler, 68

jitter, 721

jobs, processes vs., 82

job abjects, 803

job pool, 17

job queues, 85

job scheduler, 83

job scheduling, 17

journaling, 768-769

journaling file systems, see log-based
transaction-oriented file systems

just-in-time JIT) compiler, 68

JVM (Java Virtual Machine), 68

K

KB (kilobyte), 6
Kerberos, 814
kernel(s), 6, 511-518
buffering, 512-514
caching, 514
data structures, 516-517
error handling, 515
[/0 scheduling, 511-512
and I/0 subsystems, 517-518
Linux, 743, 744
multimedia systems, 720-722
nonpreemptive, 194-195
preemptive, 194-195, 701
protection, 515-516
real-time, 698-700
spooling and device reservation,
514-515
task synchronization (in Linux),
753-755
Windows XP, 788-793, 829



kerne extensions, 63
kernel memory allocation, 353-356
kernel mode, 18, 743
kernel modules, 745-748
conflict resolution, 747-748
driver registration, 746-747
management of, 745-746
kerne threads, 129
Kerr effect, 479
keys, 544, 547, 577
private, 580
public, 580
key distribution, 583--584
key ring, 583
keystreams, 580
keystroke logger, 571
kilobyte (KB), 6

L

language-based protection systems,
550-555
compiler-based enforcement,
550-553
Java, 553-555
LANS, 3= loca-area networks
latency, in real-time systems, 702-704
layers (of network protocols), 584
layered approach (operating system
gructure), 59-61
lazy swapper, 319
LCNs (logical cluster numbers), 815
LDAP, == lightweight directory-access
protocol
LDT (local descriptor table), 306
least-frequently used (LFU) page-
replacement algorithm, 338
least privilege, principle of, 532-533
least-recently-used (LRU) page-
replacement algorithm, 334-336
levels, 719
LFU page-replacement algorithm, 3338
libraries:
Linux system, 743, 744
shared, 281-282, 318
licenses, software, 235
lightweight directory-access protocol
(LDAP), 400, 828
limit regigter, 276, 277
linear addresses, 306
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linear lists (files), 420
line discipline, 772
link(s):
communication, 99
defined, 392
hard, 394
resolving, 392
symbolic, 794
linked disk space allocation, 423-425
linked lists, 430431
linked scheme index block, 426-427
linking, dynamic vs. static, 281-282, 764
Linux, 737-780
adding system call to Linux kernel
(project), 74-78
design principles for, 742-744
file systems, 764-770
ext2fs, 766-768
journaling, 768-769
process, 769-770
virtual, 765-766
history of, 737-742
distributions, 740-741
first kernel, 738-740
licensing, 741-742
system description, 740
interprocess communication,
773-774
1/0 system, 770-773
block devices, 771-772
character devices, 772-773
kernel modules, 745-748
memory management, 756-764
execution and loading of
user programs,
762-764
physical memory, 756-759
virtual memory, 759-762
network structure, 774-777
on Pentium systems, 307-309
process management, 748-757
fork() and execO process
model, 748-750
processes and threads,
750-751
process representation in, 86
real-time, 711
scheduling, 751-756
kernel synchronization,
753-755
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Linux{continued)
process, 751-753
symmetric multiprocessing,
755-756
scheduling example, 179-181
security model, 777-779
access control, 778-779
authentication, 777
Swap-space management in, 468
synchronization in, 221
threads example, 144-146
Linux distributions, 738, 740-741
Linux kernd, 738-740
Linux system, components of, 738, 743-744
lists, 316
Little's formula, 183
live streaming, 717
load balancers, 34
load balancing, 170-171
|loader, 842
loading:
dynamic, 280-281
in Linux, 762-764
load sharing, 169, 612
load time, 278
local-area networks (LANS), 14, 28,
618-619
local descriptor table (LDT), 306
locality model, 344
locality of reference, 322
local name space, 655
local (nonremote) objects, 115
local playback, 716
local procedure calls (LPCs), 786,
804-805
local replacement, 342
local replacement algorithm (priority
replacement algorithm), 344
location, file, 374
location independence, 643
location-independent file identifiers, 646
location transparency, 643
lock(s), 197, 544
advisory, 379
exclusive, 378
in Java AP, 377-378
mandatory, 379
mutex, 201, 251-252
reader-writer, 207
shared, 378

locking protocols, 227-228, 672-675 '>

lock-key scheme, 544

lock() operation, 377

log-based transaction-oriented file
systems, 437-438

log-file service, 817

logging, write-ahead, 223-224

logging area, 817

logical address, 279

logical address space, 279-280

logical blocks, 454

logical clock, 665

logical cluser numbers (LCNs), 815

logical file system, 413

logical formatting, 463

logical memory, 17, 317. Seealso virtual
memory

logical records, 383

logical units, 455

login, network, 399

long-term scheduler (job scheduler), 88

LOOK scheduling algorithm, 460-461

loopback, 111

lossless compression, 718

lossy compression, 718-719

low-level formatted disks, 454

low-level formatting (disks), 462-463

LPCs, seeloca procedure calls

LRU-approximation page replacement
algorithm, 336-338

M

MAC (message-authentication code), 582

MAC (medium access control) address,
636

Mach operating system, 61, 105-106,
851-853

Macintosh operating system, 381-382

macr o viruses, 569

magic number (files), 381

magnetic disk(s), 9, 451-453. Seealso
disk(s)

magnetic tapes, 453-454, 480

magneto-optic disks, 479

mailboxes, 100

mailbox sets, 106

mailslots, 824

mainframes, 5



main memory, 89
and address binding, 278-279
contiguous allocation of, 284-285
and fragmentation, 287-288
mapping, 285
methods, 286287
protection, 285
and dynamic linking, 281-282
and dynamic loading, 280-281
and hardware, 276-278
Intel Pentium example:
with Linux, 307-309
paging, 306-308
segmentation, 305-307
and logical vs. physical address
space, 279-280
paging for management of, 288-302
basic method, 289-292
hardware, 292-295
hashed page tables, 300
hierarchical paging, 297-300
Intel Pentium example,
306-308
inverted page tables, 301-302
protection, 295-296
and shared pages, 296-297
segmentation for management of,
302-305
basic method, 302-304
hardware, 304-305
Intel Pentium example,
305-307
and swapping, 282-284
majority protocol, 673-674
MANSs (metropolitan-area networks), 28
mandatory file-locking mechanisms, 379
man-in-the-middle attack, 561
many-to-many multithreading model,
130-131
many-to-one multithreading model,
129-130
mar shalling, 825
maskable interrupts, 501
masquer ading, 560
mass-storage management, 23-24
mass-storage sructure, 451454
disk attachment:
host-attached, 455
network-attached, 455456
storage-area network, 456
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disk management: :
bad blocks, 464-46
boot block, 463-464
formatting of disks, 462463
disk scheduling algorithms,
456-462
C-SCAN, 460
FCFS, 457—458
LOOK, 460461
SCAN, 459-460
selecting, 461-462
SSTF, 458-459
disk structure, 454
extensions, 476
magnetic disks, 431-453
magnetic tapes, 453-454
RAID structure, 468-477
performance improvement, 470
problems with, 477
RAID levels, 470476
reliability improvement,
468-470
stable-storage implementation,
477-478
swap-space management, 466-468
tertiary-storage, 478-488
future technology for, 480
magnetic tapes, 480
and operating system
support, 480-483
performance issues with,
484-488
removable disks, 478-480
magter book record (MBR), 464
madger file directory (MFD), 388
mader file table, 414
magter key, 547
magter secret (SSL), 586
matchmakers, 112
matrix product, 149
MB (megabyte), 6
MBR (magter book record), 464
MCP operating system, 853
mean time to data loss, 469
mean time to failure, 468
mean time to repair, 469
mechanisms, 56-57
media players, 727
medium access control (MAC) address,
636
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medium-term scheduler, 89
megabyte (MB), 6
memory:
anonymous, 467
core, 846
direct memory access, 11
direct virtual memory access, 504
logical, 17, 317
main, see main memory
over-alocation of, 327
physical, 17
secondary, 322
semiconductor, 10
shared, 96, 318
unified virtual memory, 433
virtual, see virtual memory
memory-address register, 279
memory allocation, 286-287
memory management, 21-22
in Linux, 756-764
execution and loading of
user programs, 762-764
physical memory, 756-759
virtual memory, 759-762
in Windows XP, 834-836
heaps, 835-836
memory-mapping files, 835
thread-local storage, 836
virtual memory, 834-835
memory-management unit (MMU),
279-280, 79
memory-mapped files 798
memory-mapped I/0, 353, 497
memory mapping, 285, 348-353
basic mechanism, 348-350
defined, 348
[/0, memory-mapped, 353
in Linux, 763-764
in Win32 AP, 350-353
memory-mapping files, 835
memory protection, 285
memory-resdent pages, 320
memory-style error-correcting
organization, 471
MEMS (micro-electronic mechanical
systems), 480
messages:
connectionless, 626
in distributed operating systems, 613
message-authentication code (MAC), 582

message digest (hash value), 582 ™
message modification, 560
message passing, 96
message-passing model, 54, 99-102
message queue, 848
message switching, 627
metadata, 400, 816
metafiles, 727
methods (Java), 553
metropolitan-area networks (MANS), 28
MFD (mager file directory), 388
MFU page-replacement algorithm, 3338
micro-electronic mechanical systems
(MEMS), 480
microkernels, 61-64
Microsoft Interface Definition
Language, 825
Microsoft Windows, see under Windows
migration:
computation, 616
data, 615-616
file, 643
process, 617
minicomputers, 5
minidisks, 386
miniport driver, 806
mirroring, 469
mirror set, 820
MMU, see memory-management unit
mobility, user, 440
mode bit, 18
modify bits (dirty bits), 329
modules, 62-63, 520
monitors, 209-217
dining-philosophers solution using,
212-214
implementation of, using
semaphores, 214-215
resumption of processes within,
215-217
usage of, 210-212
monitor calls, see system calls
monoculture, 571
monotonic, 665
Morris, Robert, 572-574
most-frequently used (MFU) page-
replacement algorithm, 333
mounting, 417
mount points, 395, 821
mount protocol, 440-441



mount table, 417, 518
MPEG files 719
MS-DOS, 811-812
multicasting, 725
MULTICS operating system, 536-538,
849-850
multilevel feedback-queue scheduling
algorithm, 168-169
multilevel index, 427
multilevel queue scheduling algorithm,
166-167
multimedia, 715-716
operating system issues with, 718
as term, 715-716
multimedia data, 30, 716-717
multimedia systems, 30, 715
characteristics of, 717-718
CineBlitz example, 728-730
compression in, 718-720
CPU scheduling in, 722-723
disk scheduling in, 723-724
kernels in, 720-722
network management in, 725-728
multinational use, 787
multipartite viruses, 571
multiple-coordinator approach
(concurrency contral), 673
multiple-partition method, 286
multiple universal-naming-convention
provider (MUP), 826
multiprocessing:
asymmetric, 169
symmetric, 169, 171-172
multiprocessor scheduling, 169-172
approaches to, 169-170
examples df:
Linux, 179-181
Solaris, 173, 175-177
Windows XP, 178-179
and load balancing, 170-171
and processor &finity, 170
symmetric multithreading, 171-172
multiprocessor systems (paralle
systems, tightly coupled systems),
12-13
multiprogramming, 15-17, 88
multitasking, see time sharing
multithr eading:
benefits of, 127-129
cancdllation, thread, 139
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and exec() system call, 138 - .
and forkO system cdll, 138
models of, 129-131
pools, thread, 141-142
and scheduler activations, 142-143
and signa handling, 139-141
symmetric, 171-172
and thread-specific data, 142
MUP (multiple univer sal-naming-
convention provider), 826
mutex:
adaptive, 218-219
in Windows XP, 790
mutex locks, 201, 247-248
mutual exclusion, 247, 666-668
centralized approach to, 666
fully-distributed approach to,
666-668
token-passing approach to, 663
mutual-exclusion condition (deadlocks),
253

names,
resolution of, 623, 828-829
in Windows XP, 793-794
named pipes, 824
naming, 100-101, 399400

defined, 643

domain name system, 399

of files, 374

lightweight diretory-access
protocol, 400

and network communication,
622-625

national-language-support (NLS) API,
787

NDIS (network device interface
specification), 822

near-line storage, 480

negotiation, 721

NetBEUI (NetBlOSextended user

interface), 823

NetBIOS (network basic input/output
system), 823, 824

NetBl OSextended user interface
(NetBEULI), 823

NET Framework, 69
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networ k(s). See also local-area networks
(LANS); wide-area networks
(WANS)
communication protocols in,
628-631
communication structure of,
622-628
and connection strategies,
626-627
and contention, 627-628
and naming/name
resolution, 622-625
and packet strategies, 626
and routing strategies,
625-626
defined, 28
design issues with, 633-636
example, 636-637
inLinux,774-777
metropolitan-area (MANs), 28
robustness of, 631-633
security in, 562
small-area, 28
threats to, 571-572
topology of, 620-622
types o, 617-618
in Windows XP, 822-829
Active Directory, 828
distributed-processing
mechanisms, 824-826
domains, 827-828
interfaces, 822
name resolution, 828-829
protocols, 822-824
redirectors and servers,
826-827
wireless, 31
networ k-attached storage, 455-456
network basic input/output system, s
NetBIOS
network computers, 32
network devices, 508-509, 771
network device interface specification
(NDIS), 822
network file systems (NFS), 438-444
mount protocol, 440441
NFS protocol, 441-442
path-name translation, 442-443
remote operations, 443—444
network information service (NIS), 399

network layer, 629 £

network-layer protocol, 584

network login, 399

network management, in multimedia
systems, 725-728

network operating systems, 28, 613-615

network virtual memory, 647

new sate, 83

NFS, see network file systems

NFS protocol, 440442

NFS V4, 653

nice value (Linux), 179, 752

NIS (network information service), 399

NLS (national-language-support) API,
787

nonblocking 1/O, 510-511

nonblocking (asynchronous) message
passing, 102

noncontainer objects (Windows XP), 603

nonmaskable interrupt, 501

nonpreemptive kernels, 194-195

nonpreemptive scheduling, 156

non-real-time clients, 728

nonremote (local) objects, 115

nonrepudiation, 583

nonresident attributes, 815

nonserial schedule, 226

nonsignaled state, 220

nonvolatile RAM (NVRAM), 10

nonvolatile RAM (NVRAM) cache, 470

nonvolatile sorage, 10, 223

no-preemption condition (deadlocks),
254

Novell NetWare protocols, 823

NTFS, 814-816

NVRAM (nonvolatile RAM), 10

NVRAM (nonvolatile RAM) cache, 470

o

objects.

access lists for, 542-543

in cache, 355

free, 356

hardware vs. software, 533

in Linux, 758

used, 356

in Windows XP, 793-796
object files 374



object linking and embedding (OLE),
825-826
object serialization, 115
object table, 796
object types, 419, 795
off-line compaction of space, 422
OLE, see object linking and embedding
on-demand streaming, 717
one-time pad, 591
one-time passwor ds, 590-591
one-to-one multithreading model, 130
one-way trust, 828
on-line compaction of space, 422
open-file table, 376
open() operation, 376
operating system(s), 1
defined, 3, 5-6
design godls for, 56
early, 839-845

dedicated computer systems,

839-840
overlapped 1/0, 843-845
shared computer systems,
841-843
features of, 3
functioning df, 3-6
guest, 67
implementation of, 57-58
interrupt-driven, 17-18
mechanisms for, 56-57
network, 28
operations of:
modes, 18-20
and timer, 20
policies for, 56-57
real-time, 29-30
as resource allocator, 5
security in, 562
services provided by, 39-41
structure of, 15-17, 58-64
layered approach, 59-61
microkernels, 61-64
modules, 62-63
simple structure, 58-59
system's view of, 5
user interface with, 4-5, 41-43
optimal page replacement algorithm,
332-334
ordering, event, see event ordering
orphan detection and elimination, 652
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OS/2 operating system, 783
out-of-band key delivery, 583
over allocation (of memory), 327
overlapped I/0, 843-845
overprovisioning, 720

owner rights (Linux), 778

P

p (page number), 289
packets, 626, 776
packet switching, 627
packing, 382
pages.
defined, 289
shared, 296-297
page allocator (Linux), 757
page-buffering algorithms, 338-339
page cache, 433, 759
page directory, 799
page-directory entries (PDES), 79
page-fault-frequency (PFF), 347-348
page-fault rate, 325
page-fault traps, 321
page frames, 799
page-frame database, 801
page number (p), 289
page offset (d), 289
pageout (Solaris), 363-364
pageout policy (Linux), 761
pager (term), 319
page replacement, 327-339. See also
frame allocation
and application performance, 339
basic mechanism, 328-331
counting-based page replacement,
338

FIFO page replacement, 331-333
global vs. local, 342
LRU-approximation page
replacement, 336-338
LRU page replacement, 334-336
optimal page replacement,
332-34
and page-buffering algorithms,
338-339
page replacement algorithm, 330
page size, 357-358
page slots, 463
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page table(s), 289-292, 322, 79
clustered, 300
forward-mapped, 298
hardware for storing, 292-294
hashed, 300
inverted, 301-302, 359-360

page-table base register (PTBR), 293

page-table length register (PTLR), 296

page-table sdlf-map, 797

paging, 288-302
basic method of, 289-292
hardware support for, 292-295
hashed page tables, 300
hierarchical, 297-300
Intel Pentium example, 306-308
inverted, 301-302
in Linux, 761-762
and memory protection, 295-296
priority, 365
and shared pages, 296-297
swapping vs., 466

paging files (Windows XP), 797

paging mechanism (Linux), 761

paired passwords, 590

PAM (pluggable authentication
modules), 777

paralle systems, see multiprocessor
systems

parces, 114

parent process, 90, 795-796

partially connected networks, 621-622

partition(s), 286, 386, 416-417
boot, 464
raw, 467
root, 417

partition boot sector, 414

partitioning, disk, 463

passwords, 588-591
encrypted, 589-590
one-time, 590-591
vulnerabilities of, 588-589

path name, 388-389

path names:
absolute, 390
relative, 390

path-name trandation, 442-443

PCBs, see process control blocks

PCI bus, 496

PCS (process-contention scope), 172

PC systems, 3 :
PDAS, see personal digital assistants
PDEs (page-directory entries), 799
peer-to-peer computing, 33-34
penetration test, 592-593
performance:

and alocation of disk space, 427-429

and 1/0 system, 522-525
with tertiary-storage, 484-488
cost, 485488
reliability, 485
speed, 484485
of Windows XP, 786
performance improvement, 432-435, 470
periods, 720
periodic processes, 720
per missions, 406
per-process open-file table, 414
persistence of vision, 716
personal computer (PC) systems, 3
personal digital assistants (PDAS), 10,
30
personal firewalls, 600
personal identification number (PIN),
501
Peterson's solution, 195-197
PFF, see page-fault-frequency
phase-change disks, 479
phishing, 562
physical address, 279
physical address space, 279-280
physical formatting, 462
physical layer, 628, 629
physical memory, 17, 315-316, 756-759
physical security, 562
PIC (position-independent code), 764
pid (process identifier), 90
PIN (personal identification number),
501
pinning, 807-808
PIO, see programmed 1/0
pipe mechanism, 774
platter (disks), 451
plug-and-play and (PnP) managers,
809-810
pluggable authentication modules
(PAM), 777
PnP managers, see plug-and-play and
managers



point-to-point tunneling protocol
(PPTP), 823
policy(ies), 56-57
group,
security, 592
policy algorithm (Linux), 761
polling, 498-499
polymor phic viruses, 570
pools:
of free pages, 327
thread, 141-142
pop-up browser windows, 564
ports, 353, 496
portability, 787
portals, 32
port driver, 806
port scanning, 575
position-independent code (PIC), 764
positioning time (disks), 452
POSIX, 783, 786
interprocess communication
example, 103-104
in Windows XP, 813-814
possession (of capability), 543
power -of-2 allocator, 354
PPTP (point-to-point tunneling
protocal), 823
P + Q redundancy scheme, 473
preemption points, 701
preemptive kernels, 194-195, 701
preemptive scheduling, 155-156
premaster secret (SSL), 586
prepaging, 357
presentation layer, 629
primary thread, 830
principle of least privilege, 532-533
priority-based scheduling, 700-701
priority-inheritance protocol, 219, 704
priority inversion, 219, 704
priority number, 216
priority paging, 365
priority replacement algorithm, 344
priority scheduling algorithm, 162-164
private keys, 580
privileged instructions, 19
privileged mode, s kernel mode
process(es), 17
background, 166
communication between, see
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interprocess communication
components of, 82
context of, 89, 749-750
and context switches, 89-90
cooperating, 96
defined, 81
environment of, 749
faulty, 687-688
foreground, 166
heavyweight, 127
independent, 96
1/0O-bound vs. CPU-bound, 88-89
jobvs., 82
in Linux, 750-751
multithreaded, see multithreading
operations on, 90-95
creation, 90-95
termination, 95
programsvs., 21, 82, 83
scheduling of, 85-90
single-threaded, 127
state of, 83
as term, 81-82
threads performed by, 84-85
in Windows XP,
process-contention scope (PCS), 172
process control blocks (PCBs, task
control blocks), 83-84
process-control system calls, 47-52
process file systems (Linux), 769-770
process identifier (pid), 90
process identity (Linux), 748-749
process management, 20-21
in Linux, 748-757
fork() and exec() process
model, 748-750
processes and threads,
750-751
process manager (Windows XP), 802-804
process migration, 617
process mix, 88-89
process objects (Windows XP), 790
processor affinity, 170
processor sharing, 165
process representation (Linux), 86
process scheduler, 85
process scheduling:
in Linux, 751-753
thread scheduling vs., 153
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process synchronization:
about, 191-193
and atomic transactions, 222-230
checkpoints, 224-225
concurrent transactions,
225-230
log-based recovery, 223-224
system model, 222-223
bounded-buffer problem, 205
critical-section problem, 193-195
hardware solution to, 197-200
Peterson's solution to,
195-197
dining-philosophers problem,
207-209, 212-214
examples of:
Java, 218
Linux, 221
Pthreads, 221-222
Solaris, 217-219
Windows XP, 220-221
monitors for, 209-217
dining-philosophers solution,
212-214
resumption of processes
within, 215-217
semaphores, implementation
using, 214-215
usage, 210-212
readers-writers problem, 206-207
semaphores for, 200-204
process termination, deadlock recovery
by, 266
production kernels (Linux), 739
profiles, 719
programs, processesvs., 82, 83. Sealso
application programs
program counters, 21, 82
program execution (operating system
service), 40
program files, 374
program loading and execution, 55
programmable interval timer, 509
programmed /O (P10), 353, 503
programming-language support, 55
program threats, 563-571
logic bombs, 565
stack- or buffer overflow attacks,
565-568
trap doors, 564-565

Trojan horses, 563-564 *
viruses, 568-571
progressive download, 716
projects, 176
proportional allocation, 341
proportional share scheduling, 708
protection, 531
access control for, 402—406
access matrix as moddl of, 538-542
control, access, 545-546
implementation, 542-545
capability-based systems, 547-550
Cambridge CAP system,
549-550
Hydra, 547-549
in computer systems, 26-27
domain of, 533-538
MULTICS example, 536-538
structure, 534-535
UNIX example, 535-536
error handling, 515
file, 374
of file systems, 402-407
goals of, 531-532
1/0, 515-516
language-based systems, 550-555
compiler-based enforcement,
550-553
Java, 553-555
as operating system service, 41
in paged environment, 295-296
permissions, 406
and principle of least privilege,
532-533
retrofitted, 407
and revocation of access rights,
546-547
security vs., 559
dtatic vs. dynamic, 534
from viruses, 596-598
protection domain, 534
protection mask (Linux), 778
protection subsystems (Windows XP),
788
protocols, Windows XP networking,
822-824
PTBR (page-table base register), 293
Pthreads, 132-134
scheduling, 172-174
synchronization in, 221-222



Pthread scheduling, 708-710

PTLR (page-table length register), 296
public domain, 741

public keys, 580

pull migration, 170

pure code, 296

pure demand paging, 322

push migration, 170, 644

Q

quantum, 789

queue(s), 85-87
capacity df, 102
input, 278
message, 848
ready, 85, 87, 283

gqueueing diagram, 87
gueueing-network analysis, 183

R

race condition, 193
RAID (redundant arrays of inexpensive
disks), 468-477
levels df, 470-476
performance improvement, 470
problems with, 477
reliability improvement, 468-470
structuring, 469
RAID array, 469
RAID levels, 470-474
RAM (random-access memory), 8
random access, 717
random-access devices, 506, 507, 844
random-access memory (RAM), 8
random-access time (disks), 452
rate-monotonic scheduling algorithm,
705-707
raw disk, 339, 416
raw disk space, 386
raw I/O, 508
raw partitions, 467
RBAC (role-based access control), 545
RC 4000 operating system, 848-849
reaching algorithms, 686-688
read-ahead technique, 435
readers, 206
readerswriters problem, 206-207
reader-writer locks, 207
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reading files, 375
read-modify-write cycle, 473
read only devices, 506, 507
read-only disks, 480
read-only memory (ROM), 71, 463-464
read queue, 772
read-write devices, 506, 507
read-write disks, 479
ready queue, 85, 87, 283
ready dtate, 83
ready thread sate (Windows XP), 789
real-addressing mode, 699
real-time class, 177
real-time clients, 728
real-time operating systems, 29-30
real-time range (Linux schedulers), 752
real-time streaming, 716, 726-728
real-time systems, 29-30, 695-696
address trandation in, 699-700
characteristics of, 696-698
CPU scheduling in, 704710
defined, 695
features not needed in, 698-699
footprint of, 697
hard, 696, 722
implementation of, 700-704
and minimizing latency,
702-704
and preemptive kernels, 701
and priority-based
scheduling, 700-701
soft, 696, 722
VxWorks example, 710-712
real-time trangport protocol (RTP), 725
real-time value (Linux), 179
reconfiguration, 633
records:
logical, 383
master boot, 464
recovery:
backup and restore, 436—437
consistency checking, 435436
from deadlock, 266-267
by process termination, 266
by resource preemption, 267
from failure, 633
of files and directories, 435437
Windows XP, 816-817
redirectors, 826
redundancy, 469. See also RAID
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redundant arrays of inexpensive disks,
see RAID
Reed-Solomon codes, 473
reentrant code (pure code), 296
reference bits, 336
Reference Model, 1SO, 585
reference string, 330
register(s), 47
base, 276, 277
limit, 276, 277
memory-address, 279
page-table base, 293
page-table length, 296
for page tables, 292-293
relocation, 280
regisry, 55, 810
relative block number, 383-384
relative path names, 390
relative speed, 14
release() operation, 377
reliability, 626
of distributed operating systems,
612-613
in multimedia systems, 721
of Windows XP, 785
relocation register, 280
remainder section, 193
remote file access (distributed file
systems), 646-651
basic scheme for, 647
and cache location, 647-648
and cache-update policy, 648, 649
and caching vs. remote service,
650-651
and consistency, 649-650
remote file systems, 398
remote file transfer, 614-615
remote login, 614
remote method invocation (RMI), 114—115
remote operations, 443-444
remote procedure calls (RPCs), 825
remote-service mechanism, 646
removable storage media, 481-483
application interface with, 481-482
disks, 478-480
and file naming, 482-483
and hierarchical storage
management, 483
magnetic disks, 451-453

magnetic tapes, 453-454, 480°
rendezvous, 102
repair, mean time to, 469
replay attacks, 560
replication, 475
repositioning (in files), 375
request edge, 249
request manager, 772
resident attributes, 815
resident monitor, 841
resolution:
name, 623
and page size, 353
resolving links, 392
resource allocation (operating system
service), 41
resour ce-allocation graph algorithm,
258-259
resource allocator, operating system as,
5
resour ce fork, 381
resour ce manager, 722
resource preemption, deadlock recovery
by, 267
resour ce-request algorithm, 260-261
resour ce reservations, 721-722
resour ce sharing, 612
resour ce utilization, 4
response time, 16, 157-158
redart area, 817
resore
data, 436-437
state, 89
retrofitted protection mechanisms, 407
revocation of access rights, 546-547
rich text format (RTF), 598
rights amplification (Hydra), 548
ring algorithm, 685-686
ring sructure, 668
risk assessment, 592-593
RMI, see remote method invocation
roaming profiles, 827
robotic jukebox, 483
robustness, 631-633
roles, 545
role-based access control (RBAC), 545
rolled-back transactions, 223
roll out, roll in, 282
ROM, see read-only memory



root partitions, 417

root uid (Linux), 778

rotational latency (disks), 452, 457

round-robin (RR) scheduling algorithm,
164-166

routing:
and network communication,

625-626
in partially connected networks,
621-622

routing protocols, 626

routing table, 625

RPCs (remote procedure calls)

RR scheduling algorithm, see round-
robin scheduling algorithm

RSX operating system, 853

RTF (rich text format), 598

R-timestamp, 229

RTP (real-time trangport protocol), 725

running state, 83

running system, 72

running thread state (Windows XP),
789

runqueue data gructure, 180, 752

RW (read-write) format, 24

S

safe computing, 598
safe sequence, 256
safety algorithm, 260
safety-critical systems, 696
sandbox (Tripwire file system), 598
SANS, see storage-area networks
SATA buses, 453
save, state, 89
scalability, 634
SCAN (elevator) scheduling algorithm,
459-460, 724
schedules, 226
scheduler (s), 87-89
long-term, 88
medium-term, 89
short-term, 838
scheduler activation, 142-143
scheduling:
cooperative, 156
CPU, see CPU scheduling
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disk scheduling algorithms,
456-462
C-SCAN, 460
FCFS, 457-458
LOOK, 460-461
SCAN, 459-460
selecting, 461462
SSTF, 458-459
earliest-deadline-first, 707
1/0, 511-512
job, 17
in Linux, 751-756
kernel synchronization,
753-755
process, 751-753
symmetric multiprocessing,
755-756
nonpreemptive, 156
preemptive, 155-156
priority-based, 700-701
proportional share, 708
Pthread, 708-710
rate-monotonic, 705-707
thread, 172-173
in Windows XP, 789790,
831-833
scheduling rules, 832
SCOPE operating system, 853
script kiddies, 5638
CS (system-contention scope), 172
SCS (small computer-systems
interface), 10
SCS buses, 453
SCS initiator, 455
SCS targets, 455
search path, 389
secondary memory, 322
secondary storage, 9, 411. Seealso disk(s)
second-chance page-replacement
algorithm (clock algorithm),
336-338
second extended file system (ext2fs),
766-769
section objects, 107
sectors, disk, 452
sector slipping, 465
sector sparing, 465, 820
secure single sign-on, 400
secure systems, 560
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security. See also file access; program
threats; protection; user
authentication
classfications of, 600-602
in computer systems, 27
and firewalling, 599-600
implementation of, 592-599
and accounting, 599
and auditing, 599
and intrusion detection,
594-596
and logging, 599
and security policy, 592
and virus protection,
596-598
and vulnerability assessment,
592-594
levels of, 562
inLinux, 777-779
access control, 77S-779
authentication, 777
as operating system service, 41
as problem, 559-563
protection vs., 559
and system/network threats,
571-576
denial of sarvice, 575-576
port scanning, 575
worms, 572-575
use of cryptography for, 576-587
and encryption, 577-584
implementation, 584-585
S example, 585-587
via user authentication, 587-592
biometrics, 591-592
passwords, 588-591
Windows XP, 817-818
in Windows XP, 602-604, 785
security access tokens (Windows XP),
602
security context (Windows XP), 602-603
security descriptor (Windows XP), 603
security domains, 599
security policy, 592
security reference monitor (SRM),
808-809
security-through-obscurity approach, 594
seeds, 590-591
seek, file, 375
seek time (disks), 452, 457

segmentation, 302-305 4
basic method, 302-304
defined, 303
hardware, 304-305
Intel Pentium example, 305-307

segment base, 304

segment limit, 304

segment tables, 304

semantics:
consistency, 401-402
copy, 513
immutable-shared-files, 402
session, 402

semaphore(s), 200-204
binary, 201
counting, 201
and deadlocks, 204
defined, 200
implementation, 202-204
implementation of monitors using,

214-215
and starvation, 204
usage of, 201
Windows XP, 790

semiconductor memory, 10

sense key, 515

sequential access (files), 382-383

sequential-access devices, 844

sequential devices, 506, 507

serial ATA (SATA) buses, 453

serializability, 225-227

srial schedule, 226

server(s), 5
cluster, 655
defined, 642
in SS9, 586

server-message-block (SMB), 822-823

server subject (Windows XP), 603

services, operating system, 39-41

session hijacking, 561

session layer, 629

session object, 798

session semantics, 402

session space, 797

sharable devices, 506, 507

shares, 176

shared files, immutable, 402

shared libraries, 281-282, 318

shared lock, 378

shared lock mode, 672



shared memory, 96, 318
shared-memory model, 54, 97-99
shared name space, 655
sharing:
load, 169, 612
and paging, 296-297
resource, 612
time, 16
shells, 41, 121-123
shell script, 379
shortest-job-first (SJF) scheduling
algorithm, 159-162
shortest-remaining-time-first scheduling,
162
shortest-seek-time (SSTF) scheduling
algorithm, 458-459
short-term scheduler (CPU scheduler),
88, 155
shoulder surfing, 588
signals.
Linux, 773
UNIX, 123, 139-141
signaled state, 220
signal handlers, 139-141
signal-safe functions, 123-124
signatures, 595
signature-based detection, 595
simple operating system sructure, 58-59
simple subject (Windows XP), 602
smulations, 183-184
single indirect blocks, 427
single-level directories, 387
single-processor systems, 12-14, 153
single-threaded processes, 127
SIF scheduling algorithm, sec shortest-
job-first scheduling algorithm
skeleton, 114
dab allocation, 355-356, 758
Sleeping-Barber Problem, 233
slices, 336
small-area networks, 28
small computer-systems interface, s
under SCSI
SM B, see server-message-block
SMP, s symmetric multiprocessing
sniffing, 588
social engineering, 562
sockets, 108-111
socket interface, 508
SOC drategy, see system-on-chip strategy
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soft affinity, 170 >

soft error, 463

soft real-time systems, 696, 722

software capability, 549

software interrupts (traps), 502

software objects, 533

Solaris.
scheduling example, 173, 175-177
swap-space management in, 467
synchronization in, 217-219
virtual memory in, 363-365

Solaris 10 Dynamic Tradng Facility, 52

solid-state disks, 24

sorted queue, 772

sour ce-code viruses, 570

sour ce files, 374

spar seness, 300, 318

gpecial-pur pose computer systems,
29-31
handheld systems, 30-31
multimedia systems, 30
real-time embedded systems, 29-30

speed, relative, 14

speed of operations:
for 1/0O devices, 506, 507

spinlock, 202

spoofed client identification, 398

spoofing, 599

spool, 514

spooling, 314-515, 844-845

Spyware, 564

SRM, s security reference monitor

SS. 3.0, 585-587

SSTF scheduling algorithm, see shortest-
seek-time scheduling agorithm

stable storage, 223, 477-478

gack, 47, 82

gack algorithms, 335

gack frame, 566-567

gack inspection, 554

gack-overflow attacks, 565-568

stage (magnetic tape), 480

stalling, 276

standby thread state (Windows XP), 789

garvation, see indefinite blocking

gate (of process), 83

sateful file service, 651

gate information, 40-401

stateless DFS, 401

stateless file service, 651
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stateless protocols, 727
State restore, 89
Sate save, 89
datic linking, 281-282, 764
datic priority, 722
datic protection, 534
gtatus information, 55
status register, 498
stealth viruses, 570
gtorage. See also mass-storage structure
holographic, 480
nonvolatile, 10, 223
secondary, 9, 411
stable, 223
tertiary, 24
utility, 476
volatile, 10, 223
gorage-area networks (SANs), 15, 455,
456
sorage array, 469
sorage management, 22-26
caching, 4—2%6
1/0 systems, 26
mass-storage management, 23-24
dream ciphers, 579-580
gream head, 520
streaming, 716-717
sream modules, 520
STREAMS mechanism, 520-522
sring, reference, 330
sripe s, 818-820
stubs, 114, 281
stub routines, 825
superblock, 414
superblock objects, 419, 765
supervisor mode, see kernel mode
suspended state, 832
sustained bandwidth, 484
swap map, 468
swapper (term), 319
swapping, 17, 89, 282-284, 319
in Linux, 761
paging vs., 466
swap space, 322
Swap-space management, 466—468
switch architecture, 11
switching:
circuit, 626-627
domain, 535

message, 627
packet, 627
symbolic links, 794
symbolic-link objects, 794
symmetric encryption, 579-580
symmetric mode, 15
symmetric multiprocessing (SMP),
13-14, 169, 171-172, 755-756
synchronization, 101-102. Sz also
process synchronization
synchronous devices, 506, 507
synchronous message passing, 102
synchronous writes, 434
SYSGEN, see system generation
system boot, 71-72
system calls (monitor calls), 7, 43-55
and API, 44-46
for communication, 54-55
for device management, 53
for file management, 53
functioning of, 43-44
for information maintenance, 53-54
for process control, 47-52
system-call firewalls, 600
system-call interface, 46
system-contention scope (SCS), 172
system device, 810
system disk, see boot disk
system files, 389
system generation (SYSGEN), 70-71
system hive, 810
system libraries (Linux), 743, 744
system mode, see kernel mode
system-on-chip (SOC) drategy, 697, 698
system process (Windows XP), 810
system programs, 55-56
system resour ce-allocation graph,
249-251
system restore, 810
systems layer, 719
system utilities, 55-56, 743-744
system-wide open-file table, 414

T

table(s), 316
file-dlocation, 425
hash, 420
master file, 414



mount, 417, 518
object, 796
open-file, 376
page, 322, 79
per-process open-file, 414
routing, 625
segment, 304
system-wide open-file, 414
tags, 543
tapes, magnetic, 453-454, 480
target thread, 139
tasks.
Linux, 750-751
VxWorks, 710
task contral blocks, see process control
blocks
TCB (trusted computer base), 601
TCPIP, see Transmission Control
Protocol/Internet Protocol
TCP sockets, 109
TDI (transport driver interface), 82
telnet, 614
Tenex operating system, 853
terminal concentrators, 523
terminated state, 83
terminated thread state (Windows XP),
789
termination:
cascading, 95
process, 90-95, 266
tertiary-storage, 478-488
future technology for, 480
and operating system support,
480-483
performance issues with,
484-488
removable disks, 478-480
tapes, 480
tertiary storage devices, 24
text files, 374
text section (of process), 82
theft of service, 560
THE operating system, 846-848
thrashing, 343-348
cause of, 343-345
defined, 343
and page-fault-frequency strategy,
347-348
and working-set model, 345-347
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threads. See also multithreading  »
cancellation, thread, 139
components o, 127
functions of, 127-129
idle, 177
kernel, 129
in Linux, 144-146, 750-751
pools, thread, 141-142
and process model, 84—&%
scheduling of, 172-173
target, 139
user, 129
in Windows XP, 144, 145, 789-790,
830, 832-833
thread libraries, 131-138
about, 131-132
Java threads, 134-138
Pthreads, 132-134
Win32 threads, 134
thread pool, 832
thread scheduling, 153
thread-specific data, 142
threats, 560. See also program threats
throughput, 157, 720
thunking, 812
tightly coupled systems, see
multiprocessor systems
time:
compile, 278
effective access, 323
effective memory-access, 294
execution, 278
of file creation/use, 375
load, 278
response, 16, 157-158
turnaround, 157
waiting, 157
time-out schemes, 632, 686-687
time quantum, 164
timer:
programmable interval, 509
variable, 20
timers, 509-510
timer objects, 790
time sharing (multitasking), 16
timestamp-based protocols, 228-230
timestamping, 675-676
timestamps, 665
TLB, see trandation look-aside buffer
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TLB miss, 293
TLB reach, 358-359
tokens, 628, 668
token passing, 628, 663
top half interrupt service routines, 755
topology, network, 620-622
Torvalds, Linus, 737
trace tapes, 134
tracks, disk, 452
traditional computing, 31-32
transactions, 222. See also atomic
transactions
defined, 768
in Linux, 768-769
in log-structured file systems,
437438
Transarc DFS, 64
trander rate (disks), 452, 453
trangtion thread gate (Windows XP), 789
transtive trust, 828
trandation coordinator, 669
trandation look-aside buffer (TLB), 293,
800
transmission control protocol (TCP), 631
Transmisson Control Protocol/Inter net
Protocal (TCP/IP), 823
transparency, 633-634, 642, 643
trangport driver interface (TDI), 822
transport layer, 629
trangport-layer protocol (TCP), 584
traps, 18,321, 502
trap doors, 564-565
tree-structured directories, 389-391
triple DES, 579
triple indirect blocks, 427
Tripwire file system, 597-598
Trgjan hor ses, 563-564
trusted computer base (TCB), 601
trug relationships, 828
tunneling viruses, 571
turnaround time, 157
turnstiles, 219
two-factor authentication, 591
twofish algorithm, 579
two-level directories, 388-389
two-phase commit (2PC) protocol,
669-672
two-phase locking protocol, 228
two tuple, 303
type safety (Java), 555

U ¥

UDP (user datagram protocol), 631
UDP sockets, 109
UFD (user file directory), 388
UFS (UNIX file system), 413
UI, see user interface
unbounded capacity (of queue), 102
UNC (uniform naming convention),
824
unformatted disk space, 336
unicasting, 725
UNICODE, 787
unified buffer cache, 433, 434
unified virtual memory, 433
uniform naming convention (UNC),
824
universal serial buses (USBs), 453
UNIX file system (UFS), 413
UNIX operating system:
consistency semantics for, 401
domain switching in, 535-536
and Linux, 737
permissions in, 406
shell and history feature (project),
121-125
signalsin, 123, 139-141
swapping in, 284
unreliability, 626
unreliable communications, 686-687
upcalls, 143
upcall handler, 143
USBSs, s universal seria buses
used objects, 356, 759
users, 4-5, 397-398
user accounts, 602
user authentication, 587-592
with biometrics, 591-592
with passwords, 588-591
user datagram protocol (UDP), 631
user -defined signal handlers, 140
use file directory (UFD), 388
user identifiers (user 1Ds), 27
effective, 27
for files, 375
user interface (Ul), 40-43
user mobility, 440
user mode, 18
user programs (user tasks), 81, 762-763
user rights (Linux), 778



user threads, 129
utility storage, 476
utilization, 840

v

VACB, see virtual address control block
VADs (virtual address descriptors),
802
valid-invalid bit, 295
variable class, 177
variables, automatic, 566
variable timer, 20
VDM, see virtua DOS machine
vector programs, 573
vfork() (virtual memory fork), 327
VFS, see virtual file system
victim frames, 329
views, 798
virtual address, 279
virtual address contral block (VACB),
806, 807
virtual address descriptors (VADs), 802
virtual address space, 317, 760-761
virtual DOS machine (VDM), 811-812
virtual file system (VFS), 417419,
765-766
virtual machines, 64-69
basic idea of, 64
benefits of, 66
implementation of, 65-66
Java Virtual Machine as example
of, 638
VMware as example df, 67
virtual memory, 17, 315-318
and copy-on-write technique,
325-327
demand paging for conserving,
319-325
basic mechanism, 320-322
with inverted page tables,
359-360
and 1/0 interlock, 361-362
and page size, 357-358
and performance, 323-325
and prepaging, 357
and program structure,
360-361
pure demand paging, 322
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and restarting instructiéns,
322-323
and TLB reach, 358-359
direct virtual memory access, 504
and frame allocation, 340-343
equal allocation, 341
global vs. local alocation,
342-343
proportiona allocation,
341-342
kernel, 762
and kernel memory allocation,
353-356
in Linux, 759-762
and memory mapping, 348-353
basic mechanism, 348-350
1/0, memory-mapped, 353
in Win32 API, 350-353
network, 647
page replacement for conserving,
327-339
and application performance,
339
basic mechanism, 328-331
counting-based page
replacement, 338
FIFO page replacement,
331-333
LRU-approximation page
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Part One

Verview

An operating system acts as an intermediary between the user of a
computer and the computer hardware. The purpose of an operating
system is to provide an environment in which a user can execute
programs in a convenient and efficient manner.

An operating system is software that manages the computer hard-
ware. The hardware must provide appropriate mechanismsto ensure the
correct operation of the computer system and to prevent user programs
from interfering with the proper operation of the system.

Internally, operating systems vary greatly in their makeup, since they
are organized along many different lines. The design of a new operating
system is a major task. It is important thatthe goals of the system be well
defined before the design begins. These goals form the basis for choices
among various algorithms and strategies.

Because an operating system is large and complex, it must be created
piece by piece. Each ofthese pieces should be a well delineated portion
ofthe system, with carefully defined inputs, outputs, and functions.
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An operating system is a program that manages the computer hardware. It
also provides a basis for application programs and acts as an intermediary
between the computer user and the computer hardware. An amazing aspect
of operating systems is how varied they are in accomplishing these tasks.
Mainframe operating systems are designed primarily to optimize utilization
of hardware. Persona computer (FC) operating systems support complex
games, business applications, and everything in between. Operating systems
for handheld computers are designed to provide an environment in which a
user can easlly interface with the computer to execute programs. Thus, some
operatingsystemsaredes gnedtobeconvenient, otherstobeefficient, andothers
some combination of the two.

Before we can explore the details of computer system operation, we need
to know something about system structure. We begin by discussing the basic
functions of system startup, 1/0, and storage. We also describe the basic
computer architecture that makes it possible to write a functional operating
system.

Because an operating system is large and complex, it must be created
piece by piece. Each of these pieces should be a well-delineated portion of the
system, with carefully defined inputs, outputs, and functions. Inthischapter we
provide a generd overview of the mgor components of an operating system.

CHAPTER OBJECTIVES

» To provide a grand tour of the major operating systems components.
» To provide coverage of basic computer system organization..

What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overal computer system. A computer system can be divided roughly into
four components: the hardware, the operating System, the application programs,
and the users (Figure 1.1).
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Figure 1.1 Abstract view of the components of a computer system.

The hardware—the central processng unit (CPU), the memory, and the
input/output (Y0) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users' computing problems. The operating system controls and
coordinates the use of the hardware among the various application programs
for the various users.

We can aso view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
smilar to agovernment. Like a government, it performs no useful function by
itsdlf. It smply provides an environment within which other programs can do
useful work.

To understand more fully the operating system's role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

111 UserView

The user's view of the computer varies according to the interface being
used. Most computer users gt in front of a PC, conssting of a monitor,

keyboard, mouse, and system unit. Such a system is designed for one user . .

to monopolize its resources. The god is to maximize the work (or play)
that the user is performing. In this case, the operating system is designed
mostly for ease of use, with some attention paid to performance and none
paid to resource utilization—how various hardware and software resources
are shared. Performance is, of course, important to the user; but rather than
resource utilization, such systems are optimized for the single-user experience.
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In other cases, a user sits at a terminal connected to a mainframe or
minicomputer. Other users are accessing the same computer through other
terminals. These users share resources and may exchange information. The
operating system in such cases is designed to maximize resource utilization—
to assure that all available CPU time, memory, and 1/0 are used efficiently and
that no individual user takes more than her fair share.

In ill other cases, users sit at workstations connected to networks of
other workstations and servers. These users have dedicated resources at their
disposal, but they also share resources such as networking and servers—file,
compute, and print servers. Therefore, their operating system is designed to
compromise between individual usability and resource utilization.

Recently, many varieties of handheld computers have come into fashion.
Most of these devices are standalone units for individual users. Some are
connected to networks, either directly by wire or (more often) through wireless
modems and networking. Because of power, speed, and interface limitations,
they perform relatively few remote operations. Their operating systems are
designed mostly for individual usability, but performance per amount of
battery life is important as well.

Some computers have little or no user view. For example, embedded
computers in home devices and automobiles may have numeric keypads and
may turn indicator lights on or off to show status, but they and their operating
systems are designed primarily to run without user intervention.

112 System View

From the computer's point of view, the operating system is the program
most intimately involved with the hardware. In this context, we can view
an operating system as a resource allocator. A computer system has many
resources that may be required to solve a problem: CPU time, memory space,
file-storage space, 1/0 devices, and so on. The operating system acts as the
manager of these resources. Facing numerous and possibly conflicting requests
for resources, the operating system must decide how to allocate them to specific
programs and users so that it can operate the computer system efficiently and
fairly. As we have seen, resource allocation is especially important where many
users access the same mainframe or minicomputer.

A dlightly different view of an operating system emphasizes the need to
control the various 1/0 devices and user programs. An operating system is a
control program. A control program manages the execution of user programs
to prevent errors and improper use of the computer. It is especialy concerned
with the operation and control of 170 devices.

113 Defining Operating Systems

We have looked at the operating system's role from the views of the user
and of the system. How, though, can we define what an operating system
is? In general, we have no completely adequate definition of an operating
system. Operating systems exist because they offer a reasonable way to solve
the problem of creating a usable computing system. The fundamental goal
of computer systems is to execute user programs and to make solving user
problems easier. Toward this goal, computer hardware is constructed. Since
bare hardware alone is not particularly easy to use, application programs are
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developed. These programs require certain common operations, such as those
controlling the 170 devices. The common functions of controlling and allocating
resources are then brought together into one piece of software: the operating
system.

In addition, we have no universally accepted definition of what is part of the
operating system. A simple viewpoint is that it includes everything a vendor
ships when you order "the operating system.” The features included, however,
vary greatly across systems. Some systems take up less than 1 megabyte of
space and lack even a full-screen editor, whereas others require gigabytes of
space and are entirely based on graphical windowing systems. (A kilobyte, or
KB, is 1,024 bytes; a megabyte, or MB, is 1,024? bytes; and a gigabyte, or GB, is
1,024° bytes. Computer manufacturers often round off these numbers and say
that a megabyte is 1 million bytes and a gigabyte is 1 billion bytes.) A more
common definition is that the operating system is the one program running
at al times on the computer (usually called the kernel), with al else being
systems programs and application programs. This last definition is the one
that we generally follow.

The matter of what constitutes an operating system has become increas-
ingly important. In 1998, the United States Department of Justice filed suit
against Microsoft, in essence claiming that Microsoft included too much func-
tionality in its operating systems and thus prevented application vendors from
competing. For example, a web browser was an integral part of the operating
system. As aresult, Microsoft was found guilty of using its operating system
monopoly to limit competition.

Computer-System Organization

Before we can explore the details of how computer systems operate, we need
a general knowledge of the structure of a computer system. In this section, we
look at several parts of this structure to round out our background knowledge.
The section is mostly concerned with computer-system organization, so you
can skim or skip it if you already understand the concepts.

1.21 Computer-System Operation

A modern general-purpose computer system consists of one or more CPUs
and a number of device controllers connected through a common bus that
provides access to shared memory (Figure 1.2). Each device controller is in
charge of a specific type of device (for example, disk drives, audio devices, and
video displays). The CRU and the device controllers can execute concurrently,
competing for memory cycles. To ensure orderly access to the shared memory,
a memory controller is provided whose function is to synchronize access to the
memory. .
For a computer to start running—for instance, when it is powered
up or rebooted—it needs to have an initial program to run. This initial
program, or bootstrap program, tends to be simple. Typicaly, it is stored
in read-only memory (ROM) or electrically erasable programmable read-only
memory (EEPROM), known by the general term firmware, within the computer
hardware. It initializes al aspects of the system, from CPU registers to device
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Figure 1.2 A modern computer system.

controllers to memory contents. The bootstrap program must know how to
load the operating system and to start executing that system. To accomplish this
goal, the bootstrap program must locate and load into memory the operating-
system kernel. The operating system then starts executing the first process,
such as “init,” and waits for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either
the hardware or the software. Hardware may trigger an interrupt at any time
by sending a signal to the CPU, usually by way of the system bus. Software
may trigger an interrupt by executing a special operation called a system call
(also called a monitor call).

When the CPU is interrupted, it stops what it is doing and immediately
transfers execution to a fixed location. The fixed location usually contains
the starting address where the service routine for the interrupt is located.
The interrupt service routine executes; on completion, the CPU resumes the
interrupted computation. A time line of this operation is shown in Figure 1.3.

Interrupts are an important part of a computer architecture. Each computer
design has its own interrupt mechanism, but several functions are common.
The interrupt must transfer control to the appropriate interrupt service routine.

CPU  user
process
executing

I/O interrupt |—| |-——I

processing

/o idle
device

transferring

o] transfer I/O  transfer
request done request done

Figure 1.3 Interrupt time line for a single process doing output.
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The straightforward method for handling this transfer would be to invoke a
generic routine to examine the interrupt information; the routine, in turn,
would call the interrupt-specific handler. However, interrupts must be handled
quickly. Since only a predefined number of interrupts is possible, a table of
pointers to interrupt routines can be used instead to provide the necessary
speed. The interrupt routine is called indirectly through the table, with no
intermediate routine needed. Generally, the table of pointers is stored in low
memory (the first 100 or so locations). These locations hold the addresses of
the interrupt service routines for the various devices. This array, or interrupt
vector, of addresses is then indexed by a unique device number, given with
the interrupt request, to provide the address of the interrupt service routine for
the interrupting device. Operating systems as different as Windows and UNIX
dispatch interrupts in this manner.

The interrupt architecture must also save the address of the interrupted
instruction. Many old designs simply stored the interrupt address in a
fixed location or in a location indexed by the device number. More recent
architectures store the return address on the system stack. If the interrupt
routine needs to modify the processor state—for instance, by modifying
register values—it must explicitly save the current state and then restore that
state before returning. After the interrupt is serviced, the saved return address
is loaded into the program counter, and the interrupted computation resumes
as though the interrupt had not occurred.

1.2.2 Storage Structure

Computer programs must be in main memory (also called random-access
memory or RAM) to be executed. Main memory is the only large storage area
(millions to billions of bytes) that the processor can access directly. It commonly
is implemented in a semiconductor technology called dynamic random-access
memory (DRAM), which forms an array of memory words. Each word has its
own address. Interaction is achieved through a sequence of load or store
instructions to specific memory addresses. The load instruction moves a word
from main memory to an internal register within the CPU, whereas the store
instruction moves the content of aregister to main memory. Aside from explicit
loads and stores, the CRU automatically loads instructions from main memory
for execution.

A typical instruction-execution cycle, as executed on a system with a von
Neumann architecture, first fetches an instruction from memory and stores
that instruction in the instruction register. The instruction is then decoded
and may cause operands to be fetched from memory and stored in some
internal register. After the instruction on the operands has been executed, the
result may be stored back in memory. Notice that the memory unit sees only
a stream of memory addresses; it does not know how they are generated (by
the instruction counter, indexing, indirection, literal addresses, or some other .
means) or what they are for (instructions or data). Accordingly, we can ignore
how amemory address is generated by a program. We are interested only in
the sequence of memory addresses generated by the running program.

Ideally, we want the programs and data to reside in main memory
permanently. This arrangement usually is not possible for the following two
reasons:
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1. Man memory isusudly too smal to store al needed programs and data
permanently.

2. Man memory is a volatile storage device that loses its contents when
power is turned df or otherwise lost.

Thus, most computer systems provide secondary sorage as an extension
of main memory. The main requirement for secondary storage isthat it be able
to hold large quantities of data permanently.

The most common secondary-storage device is a magnetic disk, which
provides storage for both programs and data. Most programs (web browsers,
compilers, word processors, spreadsheets, and so on) are stored on a disk until
they areloadedinto memory. Many programs then use thedisk as both asource
and a destination of the information for their processing. Hence, the proper
management of disk storage is of central importance to a computer system, as
we discuss in Chapter 12.

In alarger sense, however, the storage structure that we have described —
congsting of registers, main memory, and magnetic disks—is only one of many
possible storage systems. Others include cache memory, CD-ROM, magnetic
tapes, and so on. Each storage system provides the basic functions of storing
a datum and of holding that datum until it is retrieved at a later time. The
main differences among the various storage systems lie in speed, cost, Size,
and voldtility.

Thewidevariety of storage systemsin acomputer system can be organized
in a hierarchy (Figure 14) according to speed and cost. The higher levels are
expensive, but they are fast. As we move down the hierarchy, the cost per bit

Figure 1.4 Storage-device hierarchy.



10

Chapter 1  Introduction

generally decreases, whereas the accesstime generally increases. This trade-off
is reasonable; if a given storage system were both faster and less expensive
than another—other properties being the same—then there would be no
reason to use the dower, more expensive memory. In fact, many early storage
devices, including paper tape and core memories, are relegated to museums
now that magnetic tape and semiconductor memory have become faster and
cheaper. Thetop four levels of memory in Figure 14 may be constructed using
semiconductor memory.

In addition to differing in speed and cog, the various storage systems
are either volatile or nonvolatile. As mentioned earlier, volatile storage loses
its contents when the power to the device is removed. In the absence of
expensive battery and generator backup systems, data must be written to
nonvolatile sorage for safekeeping. In the hierarchy shown in Figure 14, the
storage systems above the eectronic disk are volatile, whereas those below
are nonvolatile. An dectronic disk can be designed to be ether volatile or
nonvolatile. During normal operation, the eectronic disk stores data in a
large DRAM array, which is volatile. But many eectronic-disk devices contain
a hidden magnetic hard disk and a battery for backup power. If externa
power is interrupted, the eectronic-disk controller copies the data from RAM
to the magnetic disk. When externa power is restored, the controller copies
the data back into the RAM. Another form of eectronic disk is flash memory,
which is popular in cameras and personal digital assstants (PDAS), in robots,
and increasingly as removable storage on genera -purpose computers. Flash
memory issower than DRAM but needsno power toretainits contents. Another
form of nonvolatile storage is NVRAM, which is DRAM with battery backup
power. This memory can be as fast as DRAM but has a limited duration in
which itisnonvoldtile.

The design of a complete memory system must balance all the factorsjust
discussed: It must use only as much expensive memory as necessary while
providing as much inexpensive, nonvolatile memory as possible. Caches can
be installed to improve performance where a large access-time or transfer-rate
disparity exists between two components.

1.2.3 11O Structure

Storage is only one of many types of 1/0 devices within a computer. A large
portion of operating system code is dedicated to managing 1/0, both because
of its importance to the reliability and performance of a system and because of
the varying nature of the devices. Therefore, we now provide an overview of
1/0.

A generd-purpose computer system consists of CPUs and multiple device
controllers that are connected through a common bus. Each device controller
isin charge of a spedific type of device. Depending on the controller, there may .
be more than one attached device. For instance, seven or more devices can be
attached to the small computer-systems interface (SCS) controller. A device
controller maintains some loca buffer storage and a set of specia-purpose
registers. The device controller is responsible for moving the data between
the peripheral devices that it controls and its locd buffer storage. Typicdly,
operating systems have a device driver for each device controller. This device
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Figure 1.5 How a modern computer system works.

driver understands the device controller and presents a uniform interface to
the device to the rest of the operating system.

To start an 1/0 operation, the device driver loads the appropriate registers
within the device controller. The device controller, in turn, examines the
contents of these registers to determine what action to take (such as "read
a character from the keyboard”). The controller starts the transfer of data from
the device to its local buffer. Once the transfer of data is complete, the device
controller informs the device driver via an interrupt that it has finished its
operation. The device driver then returns control to the operating system,
possibly returning the data or a pointer to the data if the operation was a read.
For other operations, the device driver returns status information.

This form of interrupt-driven1/0 is fine for moving small amounts of data
but can produce high overhead when used for bulk data movement such as disk
170. To solve this problem, direct memory access (DMA) is used. After setting
up buffers, pointers, and counters for the 1/0 device, the device controller
transfers an entire block of data directly to or from its own buffer storage to
memory, with no intervention by the CPU. Only one interrupt is generated per
block, to tell the device driver that the operation has completed, rather than
the one interrupt per byte generated for low-speed devices. While the device
controller is performing these operations, the CRU is available to accomplish
other work. -

Some high-end systems use switch rather than bus architecture. On these
systems, multiple components can talk to other components concurrently,
rather than competing for cycles on a shared bus. In this case, DMA is even
more effective. Figure 15 shows the interplay of all components of a computer
system.
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In Section 1.2 we introduced the general structure of a typical computer system.
A computer system may be organized in a number of different ways, which we
can categorize roughly according to the number of general-purpose processors
used.

1.31 Single-Processor Systems

Most systems use a single processor. The variety of single-processor systems
may be surprising, however, since these systems range from PDAs through
mainframes. On a single-processor system, there is one main CPU capable
of executing a general-purpose instruction set, including instructions from
user processes. Almost al systems have other special-purpose processors as
well. They may come in the form of device-specific processors, such as disk,
keyboard, and graphics controllers; or, on mainframes, they may come in the
form of more general-purpose processors, such as 1/0 processors that move
data rapidly among the components of the system.

All of these special-purpose processors run a limited instruction set and
do not run user processes. Sometimes they are managed by the operating
system, in that the operating system sends them information about their next
task and monitors their status. For example, a disk-controller microprocessor
receives a sequence of requests from the main CFU and implementsits own disk
gueue and scheduling algorithm. This arrangement relieves the main CPU of
the overhead of disk scheduling. PCs contain a microprocessor in the keyboard
to convert the keystrokes into codes to be sent to the CPU. In other systems
or circumstances, special-purpose processors are low-level components built
into the hardware. The operating system cannot communicate with these
processors; they do their jobs autonomously. The use of special-purpose
microprocessors is common and does not turn a single-processor system into
a multiprocessor. If there is only one general-purpose CPU, then the system is
a single-processor system. ’

1.3.2 Multiprocessor Systems

Although single-processor systems are most common, multiprocessor systems
(also known as paralle systems or tightly coupled systems) are growing
in importance. Such systems have two or more processors in close commu-
nication, sharing the computer bus and sometimes the clock, memory, and
peripheral devices.

Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect
to get more work done in less time. The speed-up ratio with N processors
is not N, however; rather, it is less than N. When multiple processors
cooperate on a task, a certain amount of overhead is incurred in keeping
all the parts working correctly. This overhead, plus contention for shared
resources, lowers the expected gain from additional processors. Similarly,
N programmers working closely together do not produce N times the
amount of work a single programmer would produce.
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2. Economy of scale. Multiprocessor systems can cost less than equivalent
multiple single-processor systems, because they can share peripherals,
mass storage, and power supplies. If several programs operate on the
same set of data, it is cheaper to store those data on one disk and to have
all the processors share them than to have many computers with local
disks and many copies of the data.

3. Increased reliability. If functions can be distributed properly among
several processors, then the failure of one processor will not halt the
system, only slow it down. If we have ten processors and one fails, then
each of the remaining nine processors can pick up a share of the work of
the failed processor. Thus, the entire system runs only 10 percent slower,
rather than failing altogether.

Increased reliability of a computer system is crucial in many applications.
The ability to continue providing service proportional to the level of surviving
hardware is called graceful degradation. Some systems go beyond graceful
degradation and are called fault tolerant, because they can suffer a failure of
any single component and still continue operation. Note that fault tolerance
requires a mechanism to allow the failure to be detected, diagnosed, and, if
possible, corrected. The HP NonStop system (formerly Tandem) system uses
both hardware and software duplication to ensure continued operation despite
faults. The system consists of multiple pairs of CPUs, working in lockstep. Both
processors in the pair execute each instruction and compare the results. If the
results differ, then one CRU of the pair is at fault, and both are halted. The
process that was being executed is then moved to another pair of CPUs, and the
instruction that failed is restarted. This solution is expensive, since it involves
specia hardware and considerable hardware duplication.

The multiple-processor systems in use today are of two types. Some
systems use asymmetric multiprocessing, in which each processor is assigned
a specific task. A master processor controls the system; the other processors
either look to the master for instruction or have predefined tasks. This scheme
defines a master—slave relationship. The master processor schedules and
allocates work to the slave processors.

The most common systems use symmetric multiprocessing (SMP), in
which each processor performs al tasks within the operating system. SVIP
means that all processors are peers; no master-slave relationship exists
between processors. Figure 16 illustrates a typical SVIP architecture. An
example of the SVIP system is Solaris, a commercial version of UNIX designed
by Sun Microsystems. A Solaris system can be configured to employ dozens of
processors, al running Solaris. The benefit of thismodel is that many processes

CPU. ..GPU see

memory

Figure 1.6 Symmetric multiprocessing architecture.
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can run simultaneously —N processes can run if there are N CPUs—without
causing a significant deterioration of performance. However, we must carefully
control 1/0 to ensure that the data reach the appropriate processor. Also, since
the CPUs are separate, one may be sitting idle while another is overloaded,
resulting in inefficiencies. These inefficiencies can be avoided if the processors
share certain data structures. A multiprocessor system of this form will allow
processes and resources—such as memory —to be shared dynamically among
the various processors and can lower the variance among the processors. Such
a system must be written carefully, as we shall see in Chapter 6. Virtually all
modern operating systems—including Windows, Windows XP, Mac OS X, and
Linux--now provide support for SVIP.

The difference between symmetric and asymmetric multiprocessing may
result from either hardware or software. Special hardware can differentiate the
multiple processors, or the software can be written to allow only one master and
multiple slaves. For instance, Sun's operating system SunOS Version 4 provided
asymmetric multiprocessing, whereas Version 5 (Solaris) is symmetric on the
same hardware.

A recent trend in CRU design is to include multiple compute cores on
a single chip. In essence, these are multiprocessor chips. Two-way chips are
becoming mainstream, while N-way chips are going to be common in high-end
systems. Aside from architectural considerations such as cache, memory, and
bus contention, these multi-core CPUs look to the operating system just as N
standard processors.

Lastly, blade servers are a recent devel opment in which multiple processor
boards, 1/0 boards, and networking boards are placed in the same chassis.
The difference between these and traditional multiprocessor systems is that
each blade-processor board boots independently and runs its own operating
system. Some blade-server boards are multiprocessor as well, which blurs the
lines between types of computers. In essence, those servers consist of multiple
independent multiprocessor systems.

1.3.3 Clugtered Systems

Another type of multiple-CPU system is the clustered system. Like multipro-
cessor systems, clustered systems gather together multiple CPUs to accomplish
computational work. Clustered systems differ from multiprocessor systems,
however, in that they are composed of two or more individual systems
coupled together. The definition of the term clustered is not concrete; many
commercial packages wrestle with what a clustered system is and why one
form is better than another. The generally accepted definition is that clustered
computers share storage and are closely linked via a local-area network (LAN)
(as described in Section 1.10) or a faster interconnect such as InfiniBand.

Clustering is usually used to provide high-availability service; that is,
service will continue even if one or more systems in the cluster fal. High
availability is generally obtained by adding a level of redundancy in the
system. A layer of cluster software runs on the cluster nodes. Each node can
monitor one or more of the others (over the LAN). If the monitored machine
fails, the monitoring machine can take ownership of its storage and restart the
applications that were running on the failed machine. The users and clients of
the applications see only a brief interruption of service.
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Clustering can be structured asymmetrically or symmetrically. In asym-
metric clustering, one machine is in hot-standby mode while the other is
running the applications. The hot-standby host machine does nothing but
monitor the active server. If that server fails, the hot-standby host becomes the
active server. In symmetric mode, two or more hosts are running applications,
and are monitoring each other. This modeis obviously more efficient, asit uses
al of the available hardware. It does require that more than one application be
available to run.

Other forms of clusters include parallel clusters and clustering over a
wide-area network (WAN) (as described in Section 1.10). Parallel clusters allow
multiple hosts to access the same data on the shared storage. Because most
operating systems lack support for simultaneous data access by multiple hosts,
parallel clusters are usually accomplished by use of special versions of software
and special releases of applications. For example, Oracle Parallel Server is a
version of Oracle's database that has been designed to run on a parallel cluster.
Each machine runs Oracle, and a layer of software tracks access to the shared
disk. Each machine has full access to all data in the database. To provide this
shared access to data, the system must also supply access control and locking
to ensure that no conflicting operations occur. This function, commonly known
as adistributed lock manager (DLM), isincluded in some cluster technology.

Cluster technology is changing rapidly. Some cluster products support
dozens of systems in a cluster, as well as clustered nodes that are separated
by miles. Many of these improvements are made possible by storage-area
networks (SANSs), as described in Section 12.3.3, which allow many systems
to attach to a pool of storage. If the applications and their data are stored on
the SAN, then the cluster software can assign the application to run on any
host that is attached to the SAN. If the host fails, then any other host can take
over. In adatabase cluster, dozens of hosts can share the same database, greetly-
increasing performance and reliability.

Operating-System Structure

Now that we have discussed basic information about computer-system orga-
nization and architecture, we are ready to talk about operating systems.
An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized along many different lines. There are, however, many
commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability to
multiprogram. A single user cannot, in general, keep either the CRU or the
[/0 devicesbusy at al times. Multiprogramming increases CRU utilization by
organizing jobs (code and data) so that the CRU always has one to execute.

Theideais as follows: The operating system keeps several jobs in memory
simultaneously (Figure 1.7). This set of jobs can be a subset of the jobs kept in
thejob pool—which contains al jobs that enter the system —since the number
of jobs that can be kept simultaneously in memory is usually smaller than
the number of jobs that can be kept in the job pool. The operating system
picks and begins to execute one of the jobs in memory. Eventualy, the job
may have to wait for some task, such as an 170 operation, to complete. In a
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Figure 1.7 Memory layout for a multiprogramming system.

non-multiprogrammed system, the CPU would sit idle. In amultiprogrammed
system, the operating system simply switches to, and executes, another job.
When that job needs to wait, the CRU is switched to another job, and so on.
Eventually, the first job finishes waiting and gets the CPU back. As long as at
least one job needs to execute, the CPU is never idle.

This idea is common in other life situations. A lawyer does not work for
only one client at a time, for example. While one case is waiting to go to trial
or have papers typed, the lawyer can work on another case. If he has enough
clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to
become politicians, so there is a certain social value in keeping lawyers busy.)

Multiprogrammed systems provide an environment in which the various
system resources (for example, CPU, memory, and peripheral devices) are
utilized effectively, but they do not provide for user interaction with the
computer system. Time sharing (or multitasking) is a logical extension of
multiprogramming. In time-sharing systems, the CRU executes multiple jobs
by switching among them, but the switches occur so frequently that the users
can interact with each program while it is running.

Time sharing requires an interactive (or hands-on) computer system,
which provides direct communication between the user and the system. The
user givesinstructions to the operating system or to a program directly, using a
input device such as a keyboard or amouse, and waits for immediate results on
an output device. Accordingly, the response time should be short—typically
less than one second.

A time-shared operating system allows many users to share the computer
simultaneously. Since each action or command in a time-shared system tends
to be short, only alittle CPU time is needed for each user. Asthe system switches -
rapidly from one user to the next, each user is given the impression that the
entire computer system is dedicated to his use, even though it is being shared
among many users.

A time-shared operating system uses CPU scheduling and multiprogram-
ming to provide each user with a small portion of a time-shared computer.
Each user has at |east one separate program in memory. A program loaded into
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memory and executing is called a process. When a process executes, it typically
executes for only a short time before it either finishes or needs to perform 1/0.
I/0 may be interactive; that is, output goes to a display for the user, and input
comes from a user keyboard, mouse, or other device. Since interactive 1,0
typically runs at "people speeds,” it may take a long time to complete. Input,
for example, may be bounded by the user's typing speed; seven characters per
second is fast for people but incredibly slow for computers. Rather than let
the CFU sit idle as this interactive input takes place, the operating system will
rapidly switch the CRU to the program of some other user.

Time-sharing and multiprogramming require several jobs to be kept
simultaneously in memory. Since in general main memory is too small to
accommodate al jobs, the jobs are kept initially on the disk in the job pool.
This pool consists of all processes residing on disk awaiting allocation of main
memory. If several jobs are ready to be brought into memory, and if there is
not enough room for al of them, then the system must choose among them.
Making this decisionisjeb scheduling, which is discussed in Chapter 5. When
the operating system selects a job from the job pool, it loads that job into
memory for execution. Having several programs in memory at the same time
requires some form of memory management, which is covered in Chapters 8
and 9. In addition, if several jobs are ready to run at the same time, the system
must choose among them. Making this decision is CPU scheduling, which is
discussed in Chapter 5. Finaly, running multiple jobs concurrently requires
that their ability to affect one another be limited in al phases of the operating
system, including process scheduling, disk storage, and memory management.
These considerations are discussed throughout the text.

In a time-sharing system, the operating system must ensure reasonable
response time, which is sometimes accomplished through swapping, where
processes are swapped in and out of main memory to the disk. A more common
method for achieving this goal is virtual memory, a technique that allows
the execution of a process that is not completely in memory (Chapter 9).
The main advantage of the virtual-memory scheme is that it enables users
to run programs that are larger than actual physical memory. Further, it
abstracts main memory into alarge, uniform array of storage, separating logical
memory as viewed by the user from physical memory. This arrangement frees
programmers from concern over memory-storage limitations.

Time-sharing systems must also provide afile system (Chapters 10 and 11).
The file system resides on a collection of disks; hence, disk management must
be provided (Chapter 12). Also, time-sharing systems provide a mechanism for
protecting resources from inappropriate use (Chapter 14). To ensure orderly
execution, the system must provide mechanisms for job synchronization and
communication (Chapter 6), and it may ensure that jobs do not get stuck in a
deadlock, forever waiting for one another (Chapter 7).

Operating-System Operations

As mentioned earlier, modern operating systems are interrupt driven. If there
are no processes to execute, no 1/0 devices to service, and no users to whom
to respond, an operating system will sit quietly, waiting for something to
happen. Events are almost always signaled by the occurrence of an interrupt



Chapter 1  Introduction

or atrap. A trap (or an exception) is a software-generated interrupt caused
either by an error (for example, division by zero or invalid memory access)
or by a specific request from a user program that an operating-system service
be performed. The interrupt-driven nature of an operating system defines
that system’s genera structure. For each type of interrupt, separate segments
of code in the operating system determine what action should be taken. An
interrupt service routine is provided that is responsible for dealing with the
interrupt.

Since the operating system and the users share the hardware and software
resources of the computer system, we need to make sure that an error in a user
program could cause problems only for the one program that was running.
With sharing, many processes could be adversely afected by a bug in one
program. For example, if aprocess gets stuck in an infiniteloop, thisloop could
prevent the correct operation of many other processes. More subtle errors can
occur in a multiprogramming system, where one erroneous program might
modify another program, the data of another program, or even the operating
system itsdf.

Without protection against these sorts of errors, either the computer must
execute only one process at a time or al output must be suspect. A properly
designed operating system must ensure that an incorrect (or malicious)
program cannot cause other programs to execute incorrectly.

151 Dual-Mode Operation

In order to ensure the proper execution of the operating system, we must be
able to distinguish between the execution of operating-system code and user-
defined code. The approach taken by most computer systems is to provide
hardware support that alows us to differentiste among various modes of
execution.

At the very least, we need two separate modes of operation: user mode
and kernel mode (also called supervisor mode, syssem mode, or privileged
mode). A bit, called the mode bit, is added to the hardware of the computer to
indicate the current mode: kernel (0) or user (1). With the mode bit, we are able
to distinguish between a task that is executed on behalf of the operating system
and one that is executed on behdf of the user. When the computer system is
executing on behdf of a user application, the system isin user mode. However,
when a user application requests a service from the operating system (via a
system call), it must transition from user to kernel mode to fulfill the request.
Thisis shown in Figure 1.8 Aswe shall see, this architectural enhancement is
useful for many other aspects of system operation as well.

At system boot time, the hardware starts in kernel mode. The operating
gystem is then loaded and starts user applications in user mode. Whenever a
trap or interrupt occurs, the hardware switches from user mode to kernel mode
(that is, changes the state of the mode bit to 0). Thus, whenever the operating .
system gains control of the computer, it isin kerne mode. The system aways
switches to user mode (by setting the mode bit to 1) before passing control to
a user program.

The dual mode of operation provides us with the means for protecting the
operating system from errant users—and errant users from one another. We
accomplish this protection by designating some of the machine instructionsthat
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Figure 1.8 Transition from user to kernel mode.

may cause harm as privileged instructions. The hardware allows privileged
instructions to be executed only in kernel mode. If an attempt is made to
execute a privileged instruction in user mode, the hardware does not execute
the instruction but rather treats it asillegal and trapsit to the operating system.

The instruction to switch to user mode is an example of a privileged
instruction. Some other examples include 1/0 control, timer management, and
interrupt management. As we shall see throughout the text, there are many
additional privileged instructions.

We can now see the life cycle of instruction execution in acomputer system.
Initial control is within the operating system, where instructions are executed
in kernel mode. When control is given to a user application, the mode is set to
user mode. Eventually, control is switched back to the operating system via an
interrupt, atrap, or a system call.

System calls provide the means for a user program to ask the operating
system to perform tasks reserved for the operating system on the user
program's behaf. A system cal is invoked in a variety of ways, depending
on the functionality provided by the underlying processor. In al forms, it isthe
method used by a process to request action by the operating system. A system
cal usually takes the form of a trap to a specific location in the interrupt vector.
This trap can be executed by a generic trap instruction, although some systems
(such as the MIPS R2000 family) have a specific syscall instruction.

When a system call is executed, it is treated by the hardware as a software
interrupt. Control passes through the interrupt vector to a service routine in
the operating system, and the mode bit is set to kernel mode. The system-
cal service routine is a part of the operating system. The kernel examines
the interrupting instruction to determine what system call has occurred; a
parameter indicates what type of service the user program is requesting.
Additional information needed for the request may be passed in registers,
on the stack, or in memory (with pointers to the memory locations passed in
registers). The kernel verifies that the parameters are correct and legal, executes
the request, and returns control to the instruction following the system call. We
describe system calls more fully in Section 2.3.

The lack of a hardware-supported dual mode can cause serious shortcom-
ings in an operating system. For instance, MSDOS was written for the Intel
8088 architecture, which has no mode bit and therefore no dual mode. A user
program running awry can wipe out the operating system by writing over it
with data; and multiple programs are able to write to a device at the same time,
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with possibly disastrous results. Recent versions of the Intel CPU, such is the
Pentium, do provide dual-mode operation. Accordingly, most contemporary
operating systems, such as Microsoft Windows 2000 and Windows XP, and
Linux and Solaris for x86 systems, take advantage of this feature and provide
greater protection for the operating system.

Once hardware protection is in place, errors violating modes are detected
by the hardware. These errors are normally handled by the operating system.
If a user program fails in some way—such as by making an attempt either
to execute an illegal instruction or to access memory that is not in the user's
address space—then the hardware will trap to the operating system. The trap
transfers control through the interrupt vector to the operating system, just as
an interrupt does. When a program error occurs, the operating system must
terminate the program abnormally. This situation is handled by the same code
as is a user-requested abnormal termination. An appropriate error message is
given, and the memory of the program may be dumped. The memory dump
is usually written to a file so that the user or programmer can examine it and
perhaps correct it and restart the program.

1.5.2 Timer

We must ensure that the operating system maintains control over the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period. The period may be fixed (for example,
1/60 second) or variable (for example, from 1 millisecond to 1 second). A
variable timer is generally implemented by a fixed-rate clock and a counter.
The operating system sets the counter. Every time the clock ticks, the counter
is decremented. When the counter reaches 0, an interrupt occurs. For instance,
a 10-bit counter with a 1-millisecond clock allows interrupts at intervals from
1 millisecond to 1,024 milliseconds, in steps of 1 millisecond.

Before turning over control to the user, the operating system ensures
that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating system, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long. A simpletechniqueisto initialize a counter with the amount of timethat a
program is allowed to run. A program with a 7-minute time limit, for example,
would have its counter initialized to 420. Every second, the timer interrupts
and the counter is decremented by 1. Aslong as the counter is positive, control
is returned to the user program. When the counter becomes negative, the
operating system terminates the program for exceeding the assigned time
limit.

Process Management
A program does nothing unless its instructions are executed by a CRU. A

program in execution, as mentioned, isaprocess. A time-shared user program
such as a compiler is a process. A word-processing program being run by an
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individual user on a PC is a process. A system task, such as sending ©utput
to a printer, can also be a process (or at least part of one). For now, you can
consider a process to be ajob or a time-shared program, but later you will learn
that the concept is more general. As we shall see in Chapter 3, it is possible
to provide system calls that allow processes to create subprocesses to execute
concurrently.

A process needs certain resources—including CRU time, memory, files,
and I/0 devices—to accomplish its task. These resources are either given to
the process when it is created or allocated to it whileit is running. In addition
to the various physical and logical resources that a process obtains when it is
created, various initialization data (input) may be passed along. For example,
consider a process whose function is to display the status of a file on the screen
of aterminal. The process will be given as an input the name of the file and will
execute the appropriate instructions and system calls to obtain and display
on the terminal the desired information. When the process terminates, the
operating system will reclaim any reusable resources.

We emphasizethat aprogram by itself isnot aprocess; aprogram isapassive
entity, such asthe contents of afile stored on disk, whereas aprocessis an active
entity. A single-threaded process has one program counter specifying the next
instruction to execute. (Threads will be covered in Chapter 4.) The execution
of such a process must be sequential. The CPU executes one instruction of the
process after another, until the process completes. Further, at any time, one
instruction at most is executed on behalf of the process. Thus, although two
processes may be associated with the same program, they are nevertheless
considered two separate execution sequences. A multithreaded process has
multiple program counters, each pointing to the next instruction to execute for
a given thread.

A process is the unit of work in a system. Such a system consists of a
collection of processes, some of which are operating-system processes (those
that execute system code) and the rest of which are user processes (those that
execute user code). All these processes can potentially execute concurrently —
by multiplexing the CFRU among them on a single CPU, for example.

The operating system is responsible for the following activities in connec-
tion with process management:

» Creating and deleting both user and system processes
» Suspending and resuming processes

» Providing mechanisms for process synchronization

» Providing mechanisms for process communication

» Providing mechanisms for deadlock handling

We discuss process-management techniques in Chapters 3 through 6.

17 Memory Management

As we discussed in Section 1.2.2, the main memory is central to the operation
of amodern computer system. Main memory is alarge array of words or bytes,
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ranging in size from hundreds of thousands to billions. Each word or byte has
its own address. Main memory isarepository of quickly accessible data shared
by the CPU and 1/0 devices. The central processor reads instructions from main
memory during the instruction-fetch cycle and both reads and writes data from
main memory during the data-fetch cycle (on a Von Neumann architecture).
The main memory is generally the only large storage device that the CPU is able
to address and access directly. For example, for the CPU to process data from
disk, those data must first be transferred to main memory by CPU-generated
1/0 calls. In the same way, instructions must be in memory for the CPU to
execute them.

For a program to be executed, it must be mapped to absolute addresses and
loaded into memory. Asthe program executes, it accesses program instructions
and data from memory by generating these absolute addresses. Eventually,
the program terminates, its memory space is declared available, and the next
program can be loaded and executed.

To improveboth the utilization of the CPU and the speed of the computer's
response to its users, general-purpose computers must keep several programs
in memory, creating a need for memory management. Many different memory-
management schemes are used. These schemes reflect various approaches, and
the effectiveness of any given algorithm depends on the situation. In selecting a
memory-management scheme for a specific system, we must take into account
many factors—especially on the hardware design of the system. Each algorithm
requires its own hardware support.

The operating system is responsible for the following activities in connec-
tion with memory management:

» Keeping track of which parts of memory are currently being used and by
whom

» Deciding which processes (or parts thereof) and data to move into and out
of memory

» Allocating and deallocating memory space as needed

Memory-management techniques will be discussed in Chapters 8 and 9.

Storage Management

To make the computer system convenient for users, the operating system
provides a uniform, logical view of information storage. The operating system
abstracts from the physical properties of its storage devices to define a logical
storage unit, the file. The operating system maps files onto physical media and
accesses these files via the storage devices.

1.8.1 File-System Management

File management is one of the most visible components of an operating system.
Computers can store information on several different types of physical media.
Magnetic disk, optical disk, and magnetic tape are the most common. Each
of these media has its own characteristics and physical organization. Each
medium is controlled by a device, such as a disk drive or tape drive, that
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also has its own unique characteristics. These properties include accesssspeed,
capacity, data-transfer rate, and access method (sequential or random).

A fileis acollection of related information defined by its creator. Commonly,
files represent programs (both source and object forms) and data. Data files may
be numeric, alphabetic, alphanumeric, or binary. Files may be free-form (for
example, text files), or they may be formatted rigidly (for example, fixed fields).
Clearly, the concept of afile is an extremely general one.

The operating system implements the abstract concept of a file by managing
mass storage media, such as tapes and disks, and the devices that control them.
Also, files are normally organized into directories to make them easier to use-
Finally, when multiple users have access to files, it may be desirable to control
by whom and in what ways (for example, read, write, append) files may be
accessed.

The operating system is responsible for the following activities in connec-
tion with file management:

» Creating and deleting files

» Creating and deleting directories to organize files

» Supporting primitives for manipulating files and directories
» Mapping files onto secondary storage

» Backing up files on stable (nonvolatile) storage media

File-management techniques will be discussed in Chapters 10 and 11.

1.8.2 Mass-Storage Management

As we have already seen, because main memory is too small to accommodate
all data and programs, and because the data that it holds are lost when power
is lost, the computer system must provide secondary storage to back up main
memory. Most modern computer systems use disks as the principal on-line
storage medium for both programs and data. Most programs—including
compilers, assemblers, word processors, editors, and formatters-—are stored
on a disk until loaded into memory and then use the disk as both the source
and destination of their processing. Hence, the proper management of disk
storage is of central importance to a computer system. The operating systemis
responsible for the following activities in connection with disk management:

* Free-space management
» Storage alocation
» Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The
entire speed of operation of a computer may hinge on the speeds of the disk
subsystem and of the algorithms that manipulate that subsystem.

There are, however, many uses for storage that is slower and lower in cost
(and sometimes of higher capacity) than secondary storage. Backups of disk
data, seldom-used data, and long-term archival storage are some examples.
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Magnetic tape drives and their tapes and CD and DVD drives and platters are
typical tertiary storage devices. The media (tapes and optical platters) vary
between WORM (write-once, read-many-times) and RW (read-write) formats.

Tertiary storage is not crucia to system performance, but it still must
be managed. Some operating systems take on this task, while others leave
tertiary-storage management to application programs. Some of the functions
that operating systems can provide include mounting and unmounting media
in devices, allocating and freeing the devices for exclusive use by processes,
and migrating data from secondary to tertiary storage.

Techniques for secondary and tertiary storage management will be dis-
cussed in Chapter 12.

1.8.3 Caching

Caching is an important principle of computer systems. Information is
normally kept in some storage system (such as main memory). As it is used,
it is copied into a faster storage system—the cache—on a temporary basis.
When we need a particular piece of information, we first check whether it is
in the cache. If it is, we use the information directly from the cache; if it is not,
we use the information from the source, putting a copy in the cache under the
assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers,
provide a high-speed cache for main memory. The programmer (or compiler)
implements the register-allocation and register-replacement algorithms to
decide which information to keep in registers and which to keep in main
memory. There are also caches that are implemented totally in hardware. For
instance, most systems have an instruction cache to hold the next instructions
expected to be executed. Without this cache, the CPU would have to wait
several cycles while an instruction was fetched from main memory. For similar
reasons, most systems have one or more high-speed data caches in the memory
hierarchy. We are not concerned with these hardware-only caches in this text,
since they are outside the control of the operating system.

Because caches have limited size, cache management is an important
design problem. Careful selection of the cache size and of a replacement
policy can result in greatly increased performance. See Figure 19 for a storage
performance comparison in large workstations and small servers that shows
the need for caching. Various replacement algorithms for software-controlled
caches are discussed in Chapter 9.

Main memory can be viewed as a fast cache for secondary storage, since
data in secondary storage must be copied into main memory for use, and
data must be in main memory before being moved to secondary storage for
safekeeping. The file-system data, which resides permanently on secondary
storage, may appear on several levels in the storage hierarchy. At the highest
level, the operating system may maintain a cache of file-system data in main
memory Also, electronic RAM disks (also known as solid-state disks) may be
used for high-speed storage that is accessed through the file-system interface.
The bulk of secondary storage is on magnetic disks. The magnetic-disk storage,
in turn, is often backed up onto magnetic tapes or removable disks to protect
against data loss in case of a hard-disk failure. Some systems automatically
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Figure 1.9 Performance of various levels of storage.

archive old file data from secondary storage to tertiary storage, such as tape
jukeboxes, to lower the storage cost (see Chapter 12).

The movement of information between levels of a storage hierarchy may
be either explicit or implicit, depending on the hardware design and the
controlling operating-system software. For instance, data transfer from cache
to CPU and registersis usually a hardware function, with no operating-system
intervention. In contrast, transfer of data from disk to memory is usually
controlled by the operating system.

In a hierarchical storage structure, the same data may appear in different
levels of the storage system. For example, suppose that an integer A that isto
be incremented by 1 is located in file B, and file B resides on magnetic disk.
The increment operation proceeds by first issuing an 1/0 operation to copy the
disk block on which A resides to main memory. This operation is followed by
copying A to the cache and to an internal register. Thus, the copy of A appears
in several places: on the magnetic disk, in main memory, in the cache, and in an
internal register (see Figure 1.10). Once the increment takes place in the internal
register, the value of A differsin the various storage systems. The value of A
becomes the same only after the new value of A is written from the internal
register back to the magnetic disk.

In a computing environment where only one process executes at a time,
this arrangement poses no difficulties, since an access to integer A will always
be to the copy at the highest level of the hierarchy. However, in a multitasking
environment, where the CRU is switched back and forth among various
processes, extreme care must be taken to ensure that, if several processes wish
to access A, then each of these processes will obtain the most recently updated
value of A.

Figure 1.10 Migration of integer A from disk to register.
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The situation becomes more complicated in a multiprocessor environment
where, in addition to maintaining internal registers, each of the CPUs also
contains a local cache. In such an environment, a copy of A may exist
simultaneously in several caches. Since the various CPUs can all execute
concurrently, we must make sure that an update to the value of A in one cache
isimmediately reflected in all other caches where A resides. This situation is
called cache coherency, and it is usually a hardware problem (handled below
the operating-system level).

In a distributed environment, the situation becomes even more complex.
In this environment, several copies (or replicas) of the same file can be kept
on different computers that are distributed in space. Since the various replicas
may be accessed and updated concurrently, some distributed systems ensure
that, when a replica is updated in one place, all other replicas are brought up
to date as soon as possible. There are various ways to achieve this guarantee,
as we discuss in Chapter 17.

1.8.4 I/O Systems

One of the purposes of an operating system is to hide the peculiarities of specific
hardware devices from the user. For example, in UNIX, the peculiarities of /0
devices are hidden from the bulk of the operating system itself by the 10
subsystem. The 1/0 subsystem consists of several components:

* A memory-management component that includes buffering, caching, and
spooling

* A general device-driver interface
» Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which
it is assigned.

We discussed in Section 1.2.3 how interrupt handlersand device drivers are
used in the construction of efficient 1/0 subsystems. In Chapter 13, we discuss
how the 1/0 subsystem interfaces to the other system components, manages
devices, transfers data, and detects /0 completion.

Protection and Security

If a computer system has multiple users and allows the concurrent execution
of multiple processes, then access to data must be regulated. For that purpose,
mechanisms ensure that files, memory segments, CPU, and other resources can
be operated on by only those processes that have gained proper authoriza-
tion from the operating system. For example, memory-addressing hardware. .
ensures that a process can execute only within its own address space. The
timer ensures that no process can gain control of the CRU without eventually
relinquishing control. Device-control registers are not accessible to users, so
the integrity of the various peripheral devices is protected.

Protection, then, is any mechanism for controlling the access of processes
or users to the resources defined by a computer system. This mechanism must
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provide means for specification of the controls to be imposed and means for
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces
between component subsystems. Early detection of interface errors can often
prevent contamination of a healthy subsystem by another subsystem that
is mafunctioning. An unprotected resource cannot defend againgt use (or
misuse) by an unauthorized or incompetent user. A protection-oriented system
provides a means to distinguish between authorized and unauthorized usage,
aswe discussin Chapter 14.

A system can have adequate protection but still be prone to falure and
alow inappropriate access. Consider a user whose authentication information
(her means of identifying hersdlf to the system) is stolen. Her data could be
copied or deleted, even though file and memory protection are working. It is
thejob of security to defend a system from external and internal attacks. Such
attacks spread across a huge range and include viruses and worms, denial-of-
sarvice atacks (which use dl of a system's resources and s0 keep legitimate
users out of the system), identity theft, and theft of service (unauthorized use
of a system). Prevention of some of these attacks is consider an operating-
system function on some systems, while others leave the prevention to policy
or additional software. Dueto the alarming risein security incidents, operating-
system security features represent a fast-growing area of research and of
implementation. Security is discussed in Chapter 15.

Protection and security require the system to be able to distinguish among
al its users. Mogt operating systems maintain a lig of user names and
associated user identifiers(user IDs). InWindowsNT parlance, thisisasecurity
ID (9D). These numerical IDs are unique, one per user. When a user logs in
to the system, the authentication stage determines the appropriate user 1D for
the user. That user ID is associated with dl of the user's processes and threads.
When an ID needs to be user readable, it is trandated back to the user name
viathe user name list.

In some circumstances, we wish to distinguish among sets of users rather
than individual users. For example, the owner of afileon aUNIX system may be
alowed to issue dl operations on that file, whereas a sdlected set of users may
only be allowed to read the file. To accomplish this, we need to define agroup
name and the st of users belonging to that group. Group functiondity can
be implemented as a system-wide list of group names and group identifiers.
A user can be in one or more groups, depending on operating-system design
degisi r?régd The user's group IDs are also included in every associated process
and thread.

In the course of norma use of a system, the user ID and group ID
for a user are aufficient. However, a user sometimes needs to ecalate
privileges to gain extra permissions for an activity. The user may need
access to a device that is redtricted, for example. Operating systems pro-
vide various methods to alow privilege escaation. On UNIX, for example,
the setuid attribute on a program causes that program to run with the
user 1D of the owner of the file rather than the current user's ID. The pro-
cess runs with this effective uib until it turns of the extra privileges or
terminates. Consider an example of how this is done in Solaris 10. User
pbg has user ID 101 and group 1D 14, which are assigned via /etc/passwd:
pbg:x:101:14: :/export/home/pbg: /usr/bin/bash
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Distributed Systems #

A distributed system is a collection of physically separate, possibly heteroge-
neous computer systems that are networked to provide the users with access
to the various resources that the system maintains. Access to a shared resource
increases computation speed, functionality, data availability, and reliability.
Some operating systems generalize network access as a form of file access, with
the details of networking contained in the network interface's device driver.
Others make users specifically invoke network functions. Generally, systems
contain a mix of the two modes—for example FTP and NFS The protocols
that create a distributed system can greatly affect that system's utility and
popularity.

A network, in the simplest terms, is a communication path between
two or more systems. Distributed systems depend on networking for their
functionality. Networks vary by the protocols used, the distances between
nodes, and the transport media. TCP/IP is the most common network protocol,
although ATM and other protocols are in widespread use. Likewise, operating-
system support of protocols varies. Most operating systems support TCP/IP,
including the Windows and UNIX operating systems. Some systems support
proprietary protocols to suit their needs. To an operating system, a network
protocol simply needs an interface device—a network adapter, for example—
with a device driver to manage it, as well as software to handle data. These
concepts are discussed throughout this book.

Networks are characterized based on the distances between their nodes.
A local-area network (LAN) connects computers within a room, a floor,
or a building. A wide-area network (WAN) usually links buildings, cities,
or countries. A global company may have a WAN to connect its offices
worldwide. These networks may run one protocol or several protocols. The
continuing advent of new technologies brings about new forms of networks.
For example, a metropolitan-area network (MAN) could link buildings within
a city. BlueTooth and 802.11 devices use wireless technology to communicate
over a distance of several feet, in essence creating a small-area network such
as might be found in a home.

Themediato carry networks are equally varied. They include copper wires,
fiber strands, and wireless transmissions between satellites, microwave dishes,
and radios. When computing devices are connected to cellular phones, they
create a network. Even very short-range infrared communication can be used
for networking. At a rudimentary level, whenever computers communicate,
they use or create a network. These networks also vary in their performance
and reliability.

Some operating systems have taken the concept of networks and dis-
tributed systems further than the notion of providing network connectivity. A
network operating system is an operating system that provides features such
as file sharing across the network and that includes a communication scheme . .
that allows different processes on different computers to exchange messages.
A computer running a network operating system acts autonomously from all
other computers on the network, although it is aware of the network and is
able to communicate with other networked computers. A distributed operat-
ing system provides a less autonomous environment: The different operating
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systems communicate closely enough to provide the illusion that only a single
operating system controls the network.

We cover computer networks and distributed systems in Chapters 16
through 18.

Special-Purpose Systems

The discussion thus far has focused on general-purpose computer systems
that we are al familiar with. There are, however, different classes of computer
systems whose functions are more limited and whose objective is to deal with
limited computation domains.

1111 Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.
These devices are found everywhere, from car engines and manufacturing
robots to VCRs and microwave ovens. They tend to have very specific tasks.
The systems they run on are usually primitive, and so the operating systems
provide limited features. Usually, they have little or no user interface, preferring
to spend their time monitoring and managing hardware devices, such as
automobile engines and robotic arms.

These embedded systems vary considerably. Some are general-purpose
computers, running standard operating systems—such as UNIX—with
special-purpose applications to implement the functionality. Others are
hardware devices with a special-purpose embedded operating system
providing just the functionality desired. Y& others are hardware devices
with application-specific integrated circuits (ASICs) that perform their tasks
without an operating system.

The use of embedded systems continues to expand. The power of these
devices, both as standalone units and as members of networks and the Web,
is sure to increase as well. Even now, entire houses can be computerized, so
that a central computer-——either a general-purpose computer or an embedded
system—can control heating and lighting, alarm systems, and even coffee
makers. Web access can enable a home owner to tell the house to heat up
before she arrives home. Someday, the refrigerator may call the grocery store
when it notices the milk is gone.

Embedded systems almost always run real-time operating systems. A
real-time system is used when rigid time requirements have been placed on
the operation of a processor or the flow of data; thus, it is often used as a
control device in a dedicated application. Sensors bring data to the computer.
The computer must analyze the data and possibly adjust controls to modify
the sensor inputs. Systems that control scientific experiments, medical imaging
systems, industrial control systems, and certain display systems are real-
time systems. Some automobile-engine fuel-injection systems, home-appliance
controllers, and weapon systems are also real-time systems.

A real-time system has well-defined, fixed time constraints. Processing
must bedone within the defined constraints, or the system will fail. For instance,
it would not do for a robot arm to be instructed to halt after it had smashed
into the car it was building. A real-time system functions correctly only if it
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returns the correct result within its time constraints. Contrast this system with
a time-sharing system, where it is desirable (but not mandatory) to respond
quickly, or abatch system, which may have no time constraints at all.

In Chapter 19, we cover real-time embedded systems in great detail. In
Chapter 5, we consider the scheduling facility needed to implement real-time
functionality in an operating system. In Chapter 9, we describe the design
of memory management for real-time computing. Finaly, in Chapter 22, we
describe the real-time components of the Windows XP operating system.

1112 Multimedia Systems

Most operating systems are designed to handle conventional data such as
text files, programs, word-processing documents, and spreadsheets. However,
a recent trend in technology is the incorporation of multimedia data into
computer systems. Multimedia data consist of audio and video files aswell as
conventional files. These data differ from conventional datain that multimedia
data—such as frames of video—must be delivered (streamed) according to
certain time restrictions (for example, 30 frames per second).

Multimedia describes a wide range of applications that are in popular use
today. These include audio files such as MP3 DVD movies, video conferencing,
and short video clips of movie previews or news stories downloaded over the
Internet. Multimedia applications may alsoinclude live webcasts (broadcasting
over the World Wide Web) of speeches or sporting events and even live
webcams that allow a viewer in Manhattan to observe customers at a cafe
in Paris. Multimedia applications need not be either audio or video; rather, a
multimedia application often includes a combination of both. For example, a
movie may consist of separate audio and video tracks. Nor must multimedia
applications be delivered only to desktop personal computers. Increasingly,
they are being directed toward smaller devices, including PDAs and cellular
telephones. For example, a stock trader may have stock quotes delivered
wirelessly and in real time to his PDA.

In Chapter 20, we explore the demands of multimedia applications, how
multimedia data differ from conventional data, and how the nature of these
data affects the desigii of operating systems that support the requirements of
multimedia systems.

1113 Handheld Systems

Handheld systems include personal digital assistants (PDAS), such as Palm
and Pocket-PCs, and cellular telephones, many of which use special-purpose
embedded operating systems. Developers of handheld systems and applica-
tions face many challenges, most of which are due to the limited size of such
devices. For example, a PDA is typically about 5 inches in height and 3 inches
in width, and it weighs less than one-half pound. Because of their size, most
handheld devices have a small amount of memory, slow processors, and small . .
display screens. We will take a look now at each of these limitations.

The amount of physical memory in a handheld depends upon the device,
but typically isis somewhere between 512 KB and 128 MB. (Contrast thiswith a
typical PC or workstation, which may have several gigabytes of memory!)
As a result, the operating system and applications must manage memory
efficiently. This includes returning all allocated memory back to the memory
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manager when the memory is not being used. In Chapter 9, we will explore
virtual memory, which allows developers to write programs that behave as if
the system has more memory than is physically available. Currently, not many
handheld devices use virtual memory techniques, so program devel opers must
work within the confines of limited physical memory.

A second issue of concern to developers of handheld devicesis the speed
of the processor used in the devices. Processors for most handheld devices
run at a fraction of the speed of a processor in a PC. Faster processors require
more power. To include a faster processor in a handheld device would require
a larger battery, which would take up more space and would have to be
replaced (or recharged) more frequently. Most handheld devices use smaller,
slower processors that consume less power. Therefore, the operating system
and applications must be designed not to tax the processor.

The last issue confronting program designers for handheld devices is 1/0.
A lack of physical space limitsinput methods to small keyboards, handwriting
recognition, or small screen-based keyboards. The small display screens limit
output options. Whereas a monitor for a home computer may measure up to
30 inches, the display for a handheld device is often no more than 3 inches
square. Familiar tasks, such as reading e-mail and browsing web pages, must
be condensed into smaller displays. One approach for displaying the content
in web pages is web clipping, where only a small subset of a web page is
delivered and displayed on the handheld device.

Some handheld devices use wireless technology, such as BlueTooth or
802.11, allowing remote accessto e-mail and web browsing. Cellular telephones
with connectivity to the Internet fal into this category. However, for PDAs that
do not provide wireless access, downloading data typically requires the user
to first download the data to a PC or workstation and then download the data
to the PDA. Some PDAs allow data to be directly copied from one device to
another using an infrared link.

Generally, the limitations in the functionality of PDAs are balanced by
their convenience and portability. Their use continues to expand as network
connections become more available and other options, such as digital cameras
and MP3 players, expand their utility.

Computing Environments

So far, we have provided an overview of computer-system organization and
major operating-system components. We conclude with a brief overview of
how these are used in a variety of computing environments.

1.12.1 Traditional Computing

As computing matures, the lines separating many of the traditional computing
environments are blurring. Consider the "typical office environment.” Just a
few years ago, this environment consisted of PCs connected to a network,
with servers providing file and print services. Remote access was awkward,
and portability was achieved by use of laptop computers. Terminals attached
to mainframes were prevalent at many companies as well, with even fewer
remote access and portability options.
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The current trend is toward providing more ways to access these computing
environments. Web technologies are stretching the boundaries of traditional
computing. Companies establish portals, which provide web accessibility
to their internal servers. Network computers are essentially terminals that
understand web-based computing. Handheld computers can synchronize with
PCs to allow very portable use of company information. Handheld PDAs can
also connect to wireless networks to use the company's web portal (as well as
the myriad other web resources).

At home, most users had a single computer with a slow modem connection
to the office, the Internet, or both. Today, network-connection speeds once
available only at great cost are relatively inexpensive, giving home users more
access to more data. These fast data connections are allowing home computers
to serve up web pages and to run networks that include printers, client PCs,
and servers. Some homes even have firewalls to protect their networks from
security breaches. Those firewalls cost thousands of dollars a few years ago
and did not even exist a decade ago.

In the latter half of the previous century, computing resources were scarce.
(Before that, they were nonexistent!) For a period of time, systems were either
batch or interactive. Batch system processed jobs in bulk, with predetermined
input (from files or other sources of data). Interactive systems waited for
input from users. To optimize the use of the computing resources, multiple
users shared time on these systems. Time-sharing systems used a timer and
scheduling algorithms to rapidly cycle processes through the CPU, giving each
user a share of the resources.

Today, traditional time-sharing systems are uncommon. The same schedul -
ing technique is still in use on workstations and servers, but frequently the
processes are al owned by the same user (or a single user and the operating
system). User processes, and system processes that provide services to the user,
are managed so that each frequently gets a slice of computer time. Consider
the windows created while a user isworking on a PC, for example, and the fact
that they may be performing different tasks at the same time.

1122 Client-Server Computing

As PCs have become faster, more powerful, and cheaper, designers have
shifted away from centralized system architecture. Terminals connected to
centralized systems are now being supplanted by PCs. Correspondingly, user-
interface functionality once handled directly by the centralized systems is
increasingly being handled by the PCs. As aresult, many of todays systems act
as server systems to satisfy requests generated by client systems. This form
of specialized distributed system, called client-server system, has the general
structure depicted in Figure 1.11.

Server systems can be broadly categorized as compute servers and file
servers:

* The compute-server system provides an interface to which a client can
send a request to perform an action (for example, read data); in response,
the server executes the action and sends back results to the client. A server
running a database that responds to client requests for data is an example
of such a system.
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Figure 1.11 General structure of a client-server system.

* The file-server system provides a file-system interface where clients can
create, update, read, and del ete files. An example of such a systemis aweb
server that delivers files to clients running web browsers.-

1123 Peer-to-Peer Computing

Another structure for a distributed system is the peer-to-peer (P2P) system
model. In this model, clients and servers are not distinguished from one
another; instead, al nodes within the system are considered peers, and each
may act as either a client or a server, depending on whether it is requesting or
providing a service. Peer-to-peer systems offer an advantage over traditional
client-server systems. In a client-server system, the server is a bottleneck; but
in a peer-to-peer system, services can be provided by several nodes distributed
throughout the network.

To participate in a peer-to-peer system, a node must first join the network
of peers. Once a node has joined the network, it can begin providing services
to—and requesting services from-—other nodes in the network. Determining
what services are available is accomplished in one of two general ways:

* When a node joins a network, it registers its service with a centralized
lookup service on the network. Any node desiring a specific service first
contacts this centralized lookup service to determine which node provides
the service. The remainder of the communication takes place between the
client and the service provider.

» A peer acting as a client must first discover what node provides a desired
service by broadcasting a request for the service to al other nodes in the
network. The node (or nodes) providing that service responds to the peer
making the request. To support this approach, a discovery protocol must be
provided that allows peers to discover services provided by other peersin
the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with
severa file-sharing services, such as Napster and Gnutella, that enable peers
to exchange files with one another. The Napster system uses an approach
similar to the first type described above: a centralized server maintains an
index of al files stored on peer nodes in the Napster network, and the actual
exchanging of files takes place between the peer nodes. The Gnutella system
uses a technique similar to the second type: a client broadcasts file requests
to other nodes in the system, and nodes that can service the request respond
directly to the client. The future of exchanging files remains uncertain because
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. many of the files are copyrighted (music, for example), and there are® laws

governing the distribution of copyrighted material. In any case, though, peer-
to-peer technology undoubtedly will play arolein the future of many services,
such as searching, file exchange, and e-mail.

1124 Web-Based Computing

The Web has become ubiquitous, leading to more access by awider variety of
devices than was dreamt of a few years ago. PCs are still the most prevalent
access devices, with workstations, handheld PDAs, and even cell phones also
providing access.

Web computing has increased the emphasis on networking. Devices that
were not previously networked now include wired or wireless access. Devices
that were networked now have faster network connectivity, provided by either
improved networking technology, optimized network implementation code,
or both.

The implementation of web-based computing has given rise to new
categories of devices, such as load balancers, which distribute network
connections among a pool of similar servers. Operating systems like Windows
95, which acted asweb clients, have evolved into Linux and Windows XP, which
can act as web servers as well as clients. Generally, the Web has increased the
complexity of devices, because their users require them to be web-enabled.

Summary

An operating system is software that manages the computer hardware as well
as providing an environment for application programs to run. Perhaps the
most visible aspect of an operating system is the interface to the computer
system it provides to the human user.

For a computer to do itsjob of executing programs, the programs must be
in main memory. Main memory isthe only large storage area that the processor
can access directly. Itisan array of words or bytes, ranging in size from millions
to billions. Each word in memory has its own address. The main memory is
usually avolatile storage devicethat loses its contents when power is turned off
or lost. Most computer systems provide secondary storage as an extension of
main memory. Secondary storage provides a form of non-volatile storage that
is capable of holding large quantities of data permanently. The most common
secondary-storage device is a magnetic disk, which provides storage of both
programs and data.

The wide variety of storage systemsin a computer system can be organized
in a hierarchy according to speed and cost. The higher levels are expensive,

but they are fast. As we move down the hierarchy, the cost per bit generally-- -

decreases, whereas the access time generally increases.

There are several different strategies for designing a computer system.
Uniprocessor systems have only a single processor while multiprocessor
systems contain two or more processors that share physical memory and
peripheral devices. The most common multiprocessor design is symmetric
multiprocessing (or SMP), where all processors are considered peers and run

P
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independently of one another. Clustered systems are a specialized form of
multiprocessor systems and consist of multiple computer systems connected
by a local area network.

To best utilize the CPU, modern operating systems employ multiprogram-
ming, which allows several jobs to be in memory at the same time, thus ensuring
the CPU always has a job to execute. Timesharing systems are an extension
of multiprogramming whereby CPU scheduling algorithms rapidly switch
between jobs, thus providing the illusion each job is running concurrently.

The operating system must ensure correct operation of the computer
system. To prevent user programs from interfering with the proper operation of
the system, the hardware has two modes: user mode and kernel mode. Various
instructions (such as 1/0 instructions and halt instructions) are privileged and
can be executed only in kernel mode. The memory in which the operating
system resides must also be protected from modification by the user. A timer
prevents infinite loops. These facilities (dual mode, privileged instructions,
memory protection, and timer interrupt) are basic building blocks used by
operating systems to achieve correct operation.

A process (or job) is the fundamental unit of work in an operating system.
Process management includes creating and deleting processes and providing
mechanisms for processes to communicate and synchronize with another.
An operating system manages memory by keeping track of what parts of
memory are being used and by whom. The operating system is also responsible
for dynamically allocating and freeing memory space. Storage space is also
managed by the operating system and this includes providing file systems for
representing files and directories and managing space on mass storage devices.

Operating systems must also be concerned with protecting and securing
the operating system and users. Protection are mechanisms that control the
access of processes or users to the resources made available by the computer
system. Security measures are responsible for defending a computer system
from external or internal attacks.

Distributed systems allow users to share resources on geographically
dispersed hosts connected via a computer network. Services may be provided
through either the client-server model or the peer-to-peer model. In aclustered
system, multiple machines can perform computations on data residing on
shared storage, and computing can continue even when some subset of cluster
members fails.

LANs and WANs are the two basic types of networks. LANs enable
processors distributed over a small geographical areato communicate, whereas
WANSs allow processors distributed over a larger area to communicate. LANs
typically are faster than WANS.

There are several computer systems that serve specific purposes. These
include real-time operating systems designed for embedded environments
such as consumer devices, automobiles, and robotics. Real-time operating
systems have well defined, fixed time constraints. Processing must be done
within the defined constraints, or the system will fail. Multimedia systems
involve the delivery of multimedia data and often have special requirements of
displaying or playing audio, video, or synchronized audio and video streams.

Recently, the influence of the Internet and the World Wide Web has
encouraged the development of modern operating systems that include web
browsers and networking and communication software as integral features.
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In a multiprogramming and time-sharing environment, several users
share the system smultaneoudly. This Situation can result in various
security problems,

a What are two such problems?

b. Can we ensure the same degree of security in a time-shared
machine as in a dedicated machine? Explain your answer.

The issue of resource utilization shows up in different forms in different
types of operating systems. List what resources must be managed
carefully in the following settings:

a Mainframe or minicomputer systems
b. Workstations connected to servers
c. Handheld computers

Under what circumstances would a user be better df using a time-
sharing system rather than a PC or single-user workstation?

Which of the functionalities listed below need to be supported by the
operating system for the following two settings: (8) handheld devices
and (b) redl-time systems.

a Batch programming
b. Virtud memory
c. Timesharing

Describe the differences between symmetric and asymmetric multipro-
cessng. What are three advantages and one disadvantage of multipro-
Ccesor systems?

How do clustered systems differ from multiprocessor systems? Whét is
required for two machines belonging to a cluster to cooperate to provide
a highly available service?

Distinguish between the client-server and peer-to-peer models of
distributed systems.

Congider a computing cluster consisting of two nodes running a
database. Describe two ways in which the cluster software can manage
access to the data on the disk. Discuss the benefits and disadvantages of
each.

How are network computers different from traditional persona com-""
puters? Describe some usage scenarios in which it is advantageous to
use network computers.

What is the purpose of interrupts? What are the differences between a
trap and an interrupt? Can traps be generated intentionally by a user
program? If so, for what purpose?
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Direct memory access is used for high-speed 1/0 devices in order to
avoid increasing the CPU's execution load.

a. How does the CPU interface with the device to coordinate the
transfer?

b. How does the CRU know when the memory operations are
complete?

c. The CRU is allowed to execute other programs while the DMA
controller is transferring data. Does this process interfere with
the execution of the user programs? If so, describe what forms of
interference are caused.

Some computer systems do not provide a privileged mode of operation
in hardware. Is it possible to construct a secure operating system for
these computer systems? Give arguments both that it is and that it is not
possible.

Give two reasons why caches are useful. What problems do they solve?
What problems do they cause? If a cache can be made as large as the
device for which it is caching (for instance, a cache as large as a disk),
why not make it that large and eliminate the device?

Discuss, with examples, how the problem of maintaining coherence of
cached data manifests itself in the following processing environments:

a.  Single-processor systems
b. Multiprocessor systems
c. Distributed systems

Describe a mechanism for enforcing memory protection in order to
prevent a program from modifying the memory associated with other
programs.

What network configuration would best suit the following environ-
ments?

a A dormitory floor

b. A university campus
c. A state

d. A nation

Define the essential properties of the following types of operating
systems:

a Batch

b. Interactive
c. Timesharing
d. Real time

e. Network
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f. Paralel .
g. Distributed

h. Clustered

i. Handheld

118 What are the tradeoffs inherent in handheld computers?
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An operating system provides the environment within which programs are
executed. Internally, operating systems vary greatly in their makeup, since
they are organized dong many different lines. The design of a new operating
gystem is a mgor task. It is important that the goals of the system be well
defined before the design begins. These gods form the basis for choices among
various algorithms and strategies.

We can view an operating system from severa vantage points. One view
focuses on the services that the system provides; another, on the interface that
it makes available to users and programmers; a third, on its components and
their interconnections. In this chapter, we explore dl three aspects of operating
systems, showing the viewpoints of users, programmers, and operating-system
designers. We consider what services an operating system provides, how they
are provided, and what the various methodologies are for designing such
systems. Findly, we describe how operating systems are created and how a
computer starts its operating system.

CHAPTER OBJECTIVES

» To describe the services an operating system provides to users, processes,
and other systems.

* To discuss the various ways of structuring an operating system.

» To explain how operating systems are installed and customized and how
they boot.

Operating-System Services

An operating system provides an environment for the execution of programs.
It provides certain services to programs and to the users of those programs.
The spedific services provided, of course, differ from one operating system to
another, but we can identify common classes. These operating-system services
are provided for the convenience of the programmer, to make the programming
task eager.

39
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One set of operating-system services provides functions that are helpful to

the user.

User interface. Almost all operating Systems have a user interface (UI).
This interface can take several forms. One is a command-line interface
(cL1), which uses text commands and a method for entering them (say, a
program to allow entering and editing of commands). Another is a batch
interface, in which commands and directives to control those commands
are entered into files, and those files are executed. Most commonly/ a
graphical user interface (GUI) is used. Here, the interface is a window
system with a pointing deviceto direct 170, choose from menus, and make
selections and a keyboard to enter text. Some systems provide two or al
three of these variations.

Program execution. The system must be able to load a program into
memory and to run that program. The program must be able to end its
execution, either normally or abnormally (indicating error).

I/O operations. A running program may require /0, which may involve a
file or an 1/0 device. For specific devices, specia functions may be desired
(such as recording to a CD or DVD drive or blanking a CRT screen). For
efficiency and protection, users usually cannot control 1/0 devices directly.
Therefore, the operating system must provide a means to do I/0.

File-system manipulation. The file system is of particular interest. Obvi-
oudly, programs need to read and write files and directories. They also
need to create and delete them by name, search for a given file, and list file
information. Finaly, some programs include permissions management to
allow or deny access to files or directories based on file ownership.

Communications. There are many circumstances in which one process
needs to exchange information with another process. Such communication
may occur between processes that are executing on the same computer
or between processes that are executing on different computer systems
tied together by a computer network. Communications may be imple-
mented via shared memory or through niessage passing, in which packets of
information are moved between processes by the operating system.

Error detection. The operating system needs to be constantly aware of
possible errors. Errors may occur in the CFRU and memory hardware (such
asamemory error or a power failure), in1/0 devices (such as a parity error
on tape, a connection failure on a network, or lack of paper in the printer),
and in the user program (such as an arithmetic overflow, an attempt to
access an illegal memory location, or a too-great use of CFU time). For each
type of error, the operating system should take the appropriate action to
ensure correct and consistent computing. Debugging facilities can greatly
enhance the user's and programmer's abilities to use the system efficiently.

Another set of operating-system functions exists not for helping the user

but rather for ensuring the efficient operation of the system itself. Systems with
multiple users can gain efficiency by sharing the computer resources among
the users.
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* Resource allocation. When there are multiple users or multiple jobs
running at the same time, resources must be allocated to each of fhem.
Many different types of resources are managed by the operating system.
Some (such as CRU cycles, main memory, and file storage) may have special
allocation code, whereas others (such as1/0 devices) may have much more
general request and release code. For instance, in determining how best to
use the CPU, operating systems have CPU-scheduling routines that take into
account the speed of the CPU, thejobsthat must be executed, the number of
registersavailable, and other factors. There may also be routinesto allocate
printers, modems, USB storage drives, and other peripheral devices.

s Accounting. We want to keep track of which users use how much and
what kinds of computer resources. This record keeping may be used for
accounting (so that users can be billed) or simply for accumulating usage
statistics. Usage statistics may be a valuable tool for researchers who wish
to reconfigure the system to improve computing services.

s Protection and security. The owners of information stored in amultiuser or
networked computer system may want to control use of that information.
When several separate processes execute concurrently, it should not be
possible for one process to interfere with the others or with the operating
system itsdf. Protection involves ensuring that al access to system
resources is controlled. Security of the system from outsiders is aso
important. Such security starts with requiring each user to authenticate
himself or herself to the system, usually by means of a password, to gain
access to system resources. It extends to defending external 1/0 devices,
including modems and network adapters, from invalid access attempts
and to recording all such connections for detection of break-ins. If a system
is to be protected and secure, precautions must be instituted throughout
it. A chainisonly as strong as its weakest link.

User Operating-System Interface

There are two fundamental approaches for users to interface with the operating
system. One technique is to provide a command-line interface or command
interpreter that allows users to directly enter commands that are to be
performed by the operating system. The second approach allows the user
to interface with the operating system via a graphical user interface or GUI.

2.2.1 Command Interpreter

Some operating systems include the command interpreter in the kernel. Others,
such as Windows XP and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs
on (on interactive systems). On systems with multiple command interpreters
to choose from, the interpreters are known as shells. For example, on UNIX
and Linux systems, there are several different shells a user may choose from
including the Bourne shell, C shell, Bourne-Again shell, the Korn shell, etc. Most
shells provide similar functionality with only minor differences; most users
choose a shell based upon personal preference.
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Themain function of the command interpreter isto get and execute the next
user-specified command. Many of the commands given at this level manipulate
files create, delete, list, print, copy, execute, and S0 on. The MSDOS and UNIX
shellsoperateinthisway. Thereare two general waysinwhichthese commands
can be implemented.

In one approach, the command interpreter itsdf contains the code to
execute the command. For example, a command to delete a file may cause
the command interpreter to jump to a section of its code that sets up the
parameters and makes the appropriate system cdl. In this case, the number of
commands that can be given determines the size of the command interpreter,
since each command requires its own implementing code.

An alternative approach—used by UNix, among other operating systems
—implements most commands through system programs. In this case, the
command interpreter does not understand the command in any way; it merely
uses the command to identify a file to be loaded into memory and executed.
Thus, the UNIX command to delete afile

rm file.txt

would search for afile called rm, load the file into memory, and execute it with
the parameter £ile.txt. The function associated with the rm command would
be defined completely by the code in the file rm. In thisway, programmers can
add new commands to the system easily by creating new files with the proper
names. The command-interpreter program, which can be small, does not have
to be changed for new commands to be added.

2.2.2 Graphical User Interfaces

A second strategy for interfacing with the operating system is through a user-
friendly graphical user interface or GUI. Rather than having users directly enter
commandsviaacommand-lineinterface, aGUl dlows provides amouse-based
window-and-menu System asaninterface. A GUI providesadesktop metaphor
where the mouse is moved to position its pointer on images, or icons, on the
screen (the desktop) that represent programs, files, directories, and system
functions. Depending on the mouse pointer's location, clicking abutton on the
mouse can invoke a program, select a file or directory—known as a folder—
or pull down a menu that contains commands.

Graphical user interfaces first appeared due in part to research taking place
in the early 1970s & Xerox PARC research fadlity. The firg GUI appeared on
the Xeox Alto computer in 1973. However, graphical interfaces became more
widespread with the advent of Apple Macintosh computers in the 1980s The
user interface to the Macintosh operating sysem (Mac O has undergone
various changes over the years, the most sgnificant being the adoption of
the Aqua interface that appeared with Mac OS X. Microsoft's firs verson
of Windows—version 1.0—was based upon a GUl interface to the MSDCS
operating system. The various versions of Windows systems proceeding this
initia verson have made cosmetic changes to the appearance of the GUI and
severd enhancements to its functiondity, including the Windows Explorer.

Traditiondly, UNIX systems have been dominated by command-line inter-
faces, although there are various GUI interfaces available, including the Com-
mon Desktop Environment (CDE) and X-Windows systemsthat are common on
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commercial versions of UNIX such as Solaris and IBM's AIX system. However,
there has been significant development in GUI designs from various open-
sour ceprojectssuch asK Desktop Environment (or KDE) and the GNOME desktop
by the GNU project. Both the KDE and GNOME desktops run on Linux and
various UNIX systems and are available under open-source licenses, which
means their source code is in the public domain.

The choice of whether to use a command-line or GUI interface is mostly
one of personal preference. As a very general rule, many UNIX users prefer
a command-line interface as they often provide powerful shell interfaces.
Alternatively, most Windows users are pleased to use the Windows GUI
environment and almost never use the MSDOS shell interface. The various
changes undergone by the Macintosh operating systems provides a nice study
in contrast. Historically, Mac OS has not provided a command line interface,
always requiring its users to interface with the operating system using its GUI.
However, with the release of Mac OS X (which isin part implemented using a
UNIX kernel), the operating system now provides both a new Aqua interface
and command-line interface as well.

The user interface can vary from system to system and even from user
to user within a system. It typically is substantially removed from the actual
system structure. The design of a useful and friendly user interface is therefore
not a direct function of the operating system. In this book, we concentrate on
the fundamental problems of providing adequate service to user programs.
From the point of view of the operating system, we do not distinguish between
user programs and system programs.

System Cadlls

System calls provide an interface to the services made available by an operating
system. These calls are generally available as routines written in C and
C++, although certain low-level tasks (for example, tasks where hardware
must be accessed directly), may need to be written using assembly-language
instructions.

Before we discuss how an operating system makes system calls available,
let's first use an example to illustrate how system calls are used: writing a
simple program to read data from one file and copy them to another file. The
first input that the program will need is the names of the two files: the input file
and the output file. These names can be specified in many ways, depending
on the operating-system design. One approach is for the program to ask the
user for the names of the two files. In an interactive system, this approach will
require a sequence of system cals, first to write a prompting message on the
screen and then to read from the keyboard the characters that define the two
files. On mouse-based and icon-based systems, a menu of file names is usually
displayed in a window. The user can then use the mouse to select the source
name, and a window can be opened for the destination name to be specified. -
This sequence requires many 1/0 system calls.

Once the two file names are obtained, the program must open the input file
and create the output file. Each of these operations requires another system call.
There are aso possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that name or that
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the file is protected against access. In these cases, the program should print a
message on the console (another sequence of system calls) and then terminate
abnormally (another system call). If the input file exists, then we must create a
new output file. We may find that there is already an output file with the same
name. This situation may cause the program to abort (a system call), or we
may delete the existing file (another system call) and create a new one (another
system call). Another option, in an interactive system, is to ask the user (via
a sequence of system calls to output the prompting message and to read the
response from the terminal) whether to replace the existing file or to abort the
program.

Now that both files are set up, we enter a loop that reads from the input
file (asystem call) and writes to the output file (another system call). Each read
and write must return status information regarding various possible error
conditions. On input, the program may find that the end of the file has been
reached or that there was a hardware failurein the read (such as a parity error).
The write operation may encounter various errors, depending on the output
device (no more disk space, printer out of paper, and so on).

Finally, after the entire file is copied, the program may close both files
(another system call), write a message to the console or window (more
system calls), and finaly terminate normally (the final system cal). As we
can see, even simple programs may make heavy use of the operating system.
Freguently, systems execute thousands of system calls per second. This system-
cal sequence is shown in Figure 2.1.

Most programmers never see this level of detail, however. Typically, appli-
cation developers design programs according to an application programming
interface (APl). The AP specifies a set of functions that are available to an
application programmer, including the parameters that are passed to each

source file »| destination file

Figure 2.1 Example of how system calls are used.
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EXAMPLE OF STANDARD API

return value

l

BOOL ReadFile ¢ (HANDLE file,
] LPVA D buf f er,
T DWCRD bhyess To Meal], [ parameters
LPDWORD bytes Read,

function name LPOVERLAPPED o/". ) ;

Figure 2.2 The AP| for the ReadFile( function. =~

A description of the parameters passed to ReadFileO is as follows:

. HANDLE f|Ie—the flleto beread

« LPVOD buffer~—a buffer Where the daIa WI|| be reed in
from. .

« DWORD bytesToRead —-the number of bytas to be read into the buffer'
» LPDWORD bytesRead —the number of bytes read during the Iasi_r'_______ L
LPOVERLAPPED ovl—indicatesi f overlapped! /O is being used.

function and the return values the programmer can expect. Three of the most
common APs available to application programmers are the Win32 AR for
Windows systems, the POSIx AR for POSiX-based systems (which includes
virtually al versions of UNIX, Linux, and Mac OS X), and the Java AR for
designing programs that run on the Java virtual machine.

Note that the system-call names used throughout this text are generic
examples. Each operating system has its own name for each system call.

Behind the scenes, the functions that make up an AP typically invoke the
actual system calls on behaf of the application programmer. For example,
the Win32 function CreateProcess() (which unsurprisingly is used to create a
new process) actually calls the NTCreateProcess() system cal in the Windows
kernel. Why would an application programmer prefer programming according
to an AR rather than invoking actual system calls? There are several reasons for
doing so. One benefit of programming according to an AP concerns program
portability: An application programmer designing a program using an AR can
expect her program to compile and run on any system that supports the same
AR (athough in redlity, architectural differences often make this more difficult
than it may appear). Furthermore, actual system calls can often be more detailed
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and difficult to work with than the AR available to an application programmer.
Regardless, there often exists a strong correlation between invoking a function
in the AR and its associated system call within the kernel. In fact, many of the
POsSIX and Win32 APIs are similar to the native system calls provided by the
UNIX, Linux, and Windows operating systems.

The run-time support system (aset of functions built into libraries included
with a compiler) for most programming languages provides a system-call
interface that serves as the link to system calls made available by the operating
system. The system-call interface intercepts function calls in the AR and
invokes the necessary system call within the operating system. Typicaly, a
number is associated with each system call, and the system-cal interface
maintains a table indexed according to these numbers. The system call interface
then invokes the intended system call in the operating system kernel and
returns the status of the system call and any return values.

The caller needs to know nothing about how the system call isimplemented
or what it does during execution. Rather, it just needs to obey the AR and
understand what the operating system will do as a result of the execution of
that system call. Thus, most of the details of the operating-system interface
are hidden from the programmer by the AR and are managed by the run-time
support library. The relationship between an AR, the system-call interface,
and the operating system is shown in Figure 2.3, which illustrates how the
operating system handles a user application invoking the open() system call.

System calls occur in different ways, depending on the computer in use.
Often, more information is required than simply the identity of the desired
system call. The exact type and amount of information vary according to the
particular operating system and call. For example, to get input, we may need
to specify the file or device to use as the source, as well as the address and

open (}
user
mode I o '
— system call interface !—
kernel ]
mode A
I open ()
* Implementation
[ »  of open {)
system call

return

Figure 2.3 The handling of a user application invoking the open() system call.
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%

I register R

X: parameters
forcall =

e use pa;_arﬁetérs code for
load address X _/ ¢ Hrom - tefeXi system
system call 13-+ > call 13

¥

user program

operating system
Figure 2.4 Passing of parameters as a table.

length of the memory buffer into which the input should be read. Of course,
the device or file and length may be implicit in the call.

Three general methods are used to pass parametersto the operating system.
The simplest approach is to pass the parameters in registers. In some cases,
however, there may be more parameters than registers. In these cases, the
parameters are generally stored in ablock, or table, in memory, and the address
of the block is passed as a parameter in a register (Figure 2.4). This is the
approach taken by Linux and Solaris. Parameters also can be placed, or pushed,
onto the stack by the program and popped off the stack by the operating system.
Some operating systems prefer the block or stack method, because those
approaches do not limit the number or length of parameters being passed.

Types of System Calls

System cals can be grouped roughly into five major categories. process
control, file manipulation, device manipulation, information maintenance,
and communications. In Sections 2.4.1 through 2.4.5, we discuss briefly the
types of system calls that may be provided by an operating system. Most of
these system calls support, or are supported by, concepts and functions that
are discussed in later chapters. Figure 2.5 summarizes the types of system calls
normally provided by an operating system.

2.4.1 Process Control

A running program needs to be able to halt its execution either normally (end)
or abnormally (abort). If a system cal is made to terminate the currently
running program abnormally, or if the program runs into a problem and
causes an error trap, a dump of memory is sometimes taken and an error
message generated. The dump is written to disk and may be examined by a
debugger—a system program designed to aid the programmer in finding and
correcting bugs—to determine the cause of the problem. Under either normal
or abnormal circumstances, the operating system must transfer control to the
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» Process control :
< end, abort
o |oad, execute
o create process, terminate process
o get process attributes, set process attributes
o wait for time
o wait event, signal event
o alocate and free memory
* File management
° create file, delete file
o open, close
o read, write, reposition
o get file attributes, set file attributes
» Device management
o request device, release device
o read, write, reposition
o get device attributes, set device attributes
o logically attach or detach devices
* Information maintenance
o get time or date, set time or date
o get system data, set system data
o get process, file, or device attributes
o set process, file, or device attributes
e Communications
o create, delete communication connection
° send, receive messages
o transfer status information

o attach or detach remote devices
Figure 2.5 Types of system calls.

invoking command interpreter. The command interpreter then reads the next

command. In an interactive system, the command interpreter simply continues
with the next command; it is assumed that the user will issue an appropriate
command to respond to any error. In a GUI system, a pop-up window might
alert the user to the error and ask for guidance. In abatch system, the command
interpreter usually terminates the entire job and continues with the next job.
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__EXAMPLE OF STANDARD.C

#include <stdio.h>
int main ()

printf ("Greetings");.

.
return o;

}

standard C library

write ()
system call

Figure 2.6 . C library handing of write(). .. ... ... -

Some systems allow control cards to indicate special recovery actions in case
an error occurs. A control card is a batch system concept. It is a command to
manage the execution of a process. If the program discovers an error in itsinput
and wants to terminate abnormally, it may also want to define an error level.
More severe errors can be indicated by a higher-level error parameter. Itisthen
possible to combine normal and abnormal termination by defining a normal
termination as an error at level 0. The command interpreter or a following
program can use this error level to determine the next action automatically.

A process or job executing one program may want to load and execute
another program. This feature allows the command interpreter to execute a
program as directed by, for example, a user command, the click of a mouse,
or abatch command. An interesting question is where to return control when
the loaded program terminates. This question is related to the problem of
whether the existing program is lost, saved, or allowed to continue execution
concurrently with the new program.
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If control returns to the existing program when the new program termi-
nates, we must save the memory image of the existing program; thus, we have
effectively created a mechanism for one program to cal another program. If
both programs continue concurrently, we have created a new job or process to
be multiprogrammed. Often, thereis a system call specificdly for this purpose
(create process or submit job).

If we create anew job or process, or perhaps even a set of jobs or processes,
we should be able to control its execution. This control requires the ability
to determine and reset the attributes of ajob or process, including the job's
priority, its maximum alowable execution time, and so on (get process
attributes and set process attributes). We may dso want to terminate
ajob or process that we created (terminate process) if we find that it is
incorrect or is no longer needed.

Having created new jobs or processes, we may need to wait for them to
finish their execution. We may want to wait for a certain amount of time to
pass (wait time); more probably, we will want to wait for a specific event
to occur (wait event). The jobs or processes should then sgna when that
event has occurred (signal event). System cdls of thistype, dealing with the
coordination of concurrent processes, are discussed in great detail in Chapter
6.

Another st of system cdls is helpful in debugging a program. Many
systems provide system cdls to dump memory. This provision is useful for
debugging. A program trace lists each instruction as it is executed; it is
provided by fewer systems. Even microprocessors provide a CRU mode known
as single step, in which atrap is executed by the CRU after every instruction.
Thetrap is usudly caught by a debugger.

Many operating systems provide a time profile of a program to indicate
the amount of time that the program executes at a particular location or set
of locations. A time profile requires either a tracing facility or regular timer
interrupts. At every occurrence of the timer interrupt, the value of the program

-
free memory

free memory

process

" kemnel kernel .

@ ©

Figure 2.7 MS-DOS execution. (@) At system startup. (b) Running a program.
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counter is recorded. With sufficiently frequent timer interrupts, a statistical
picture of the time spent on various parts of the program can be obtained.

There are so many facets of and variations in process and job control that
we next use two examples—one involving a single-tasking system and the
other a multitasking system—to clarify these concepts. The MSDOS operating
system is an example of a single-tasking system. It has a command interpreter
that is invoked when the computer is started (Figure 2.7(a)). Because MSDOS
is single-tasking, it uses a simple method to run a program and does not create
anew process. It loads the program into memory, writing over most of itself to
give the program as much memory as possible (Figure 2.7(b)). Next, it sets the
instruction pointer to the first instruction of the program. The program then
runs, and either an error causes a trap, or the program executes a system call
to terminate. In either case, the error code is saved in the system memory for
later use. Following this action, the small portion of the command interpreter
that was not overwritten resumes execution. Its first task is to reload the rest
of the command interpreter from disk. Then the command interpreter makes
the previous error code available to the user or to the next program.

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking
system. When a user logs on to the system, the shell of the user's choice
is run. This shell is similar to the MSDOS shell in that it accepts commands
and executes programs that the user requests. However, since FeeBSD is a
multitasking system, the command interpreter may continue running while
another program is executed (Figure 2.8). To start a new process, the shell
executes a fork() system call. Then, the selected program is loaded into
memory via an exec() system call, and the program is executed. Depending
on the way the command was issued, the shell then either waits for the process
to finish or runs the process "in the background.” In the latter case, the shell
immediately requests another command. When a process is running in the
background, it cannot receive input directly from the keyboard, because the
shell isusing thisresource. 1/0 is therefore done through files or through a GUI
interface. Meanwhile, the user is free to ask the shell to run other programs, to
monitor the progress of the running process, to change that program's priority,

process D

free memory

process C

process B

kernel

Figure 2.8 FreeBSD running multiple programs.
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I ./all. d ‘pgrep xclock' XEventsQueued
dtrace: script ‘./all.d’ matched 52377 probes
CPU FUNCTI ON
0 -> XEven:IsQueued
~-> XEvent sQueued
-> XliTransBytesReadable
<- _X| TransByt esReadabl e
-> _Xli TransSocket Byt esReadabl e
<- _Xl| TransSocket Byt esr eadabl e
-> joctl
-> joctl
-> getf
-> set_active_fd
<- set_active_fd
<- getf
-> get _udat anodel
<- get _udat anodel

o

[eNeoNeoNoNoNeoNeoNolNeNolNoNe)

-> rel easef
-> clear_active_fd
<- clear_active_fd
-> cv_broadcast
<- cv_broadcast
<- rel easef
<- ioctl
<- ioctl
<- _XEvent sQueued
«- XEventsQueued

CCCARXARAXRXRXAXARX AXRNAXRXRRWNRCCCCCcCcC

O 0Ooco0coop WO

and traci ng tools, fostered by research ét__
Paradyn project. =~

R

and so on. When the process is done, it executes an exit() system cal to
terminate, returning to the invoking process a status code of O or a nonzero
error code. This status or error code is then available to the shell or other
programs. Processes are discussed in Chapter 3 with an program example
using the fork() and exec() system calls.
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2.4.2 File Management 3

Thefile system will be discussed in moredetail in Chapters 10 and 11. Wecan,
however, identify severa common system cals dealing with files,

We firg need to be able to create and delete files. Either system cdl
requires the name of the file and perhaps some of the fil€'s attributes. Once the
file is created, we need to open it and to use it. We may aso read, write, or
reposition (rewinding or skipping to the end of thefile, for example). Findly,
we need to close thefile, indicating that we are no longer using it.

We may need these same sets of operations for directories if we have a
directory structure for organizing filesin the file system. In addition, for either
files or directories, we need to be able to determine the values of various
attributes and perhaps to reset them if necessary. File attributes include the
file name, a file type, protection codes, accounting information, and so on.
At least two system calls, get file attribute and set file attribute,
are required for this function. Some operating systems provide many more
cdls, such as cdls for file move and copy. Others might provide an AR that
performs those operations using code and other system calls, and others might
just provide system programs to perform those tasks. If the system programs
are cdlable by other programs, then each can be considered an AR by other
System programs.

2.4.3 Device Management

A process may need several resources to execute—main memory, disk drives,
access to files, and so on. If the resources are available, they can be granted,
and control can be returned to the user process. Otherwise, the process will
have to wait until sufficient resources are available.

The various resources controlled by the operating sysstem can be thought
of as devices. Some of these devices are physical devices (for example, tapes),
while others can be thought of as abstract or virtual devices (for example,
files). If there are multiple users of the system, the system may require us to
firg request the device, to ensure exclusive use of it. After we are finished
with the device, we rel ease it. These functions are smilar to the open and
close system cdls for files. Other operating systems dlow unmanaged access
to devices. The hazard then is the potential for device contention and perhaps
deadlock, which is described in Chapter 7.

Once the device has been requested (and dlocated to us), we can read,
write, and (possibly) reposition the device, just as we can with files. In fact,
the smilarity between 1,0 devices and files is so great that many operating
systems, including UNIX, merge the two into acombined file-device structure.
In this case, a st of sysem cdls is used on files and devices. Sometimes,
1/0 devices are identified by specid file names, directory placement, or file
attributes.

The t1 can dso make files and devices appear to be smilar, even though
the underlying system cdls are dissmilar. Thisis another example of the many
design decisions that go into building an operating system and user interface.

2.4.4 Information Maintenance

Many system cdls exis smply for the purpose of transferring information
between the user program and the operating system. For example, most
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systems have a system call to return the current time and date. Other s¥stem
calls may return information about the system, such as the number of current
users, the version number of the operating system, the amount of free memory
or disk space, and so on.

In addition, the operating system keeps informationabout all its processes,
and svstem calls are used to access this information. Generally, calls are
also used to reset the process information (get process attributes and
set process attributes). In Section 3.1.3, we discuss what information is
normally kept.

2.4.5 Communication

There are two common models of interprocess communication: the message-
passing model and the shared-memory model. In the message-passing model,
the communicating processes exchange messages with one another to transfer
information. Messages can be exchanged between the processes either directly
or indirectly through a common mailbox. Before communication can take
place, a connection must be opened. The name of the other communicator
must be known, be it another process on the same system or a process on
another computer connected by a communications network. Each computer
in a network has a host name by which it is commonly known. A host aso
has a network identifier, such as an IP address. Smilarly, each process has
a process name, and this name is trandated into an identifier by which the
operating system can refer to the process. Theget hostidand get processid
system cdls do this trandation. The identifiers are then passed to the general-
purpose open and close cdls provided by the file syslem or to specific
open connection and close connection system cals, depending on the
system’'s model of communication. The recipient process usually must give its
permission for communication to take place with an accept connection cal.
Most processes that will be receiving connections are special-purpose daemons,
which are systems programs provided for that purpose. They execute a wait
for connectioncal and are awakened when aconnectionismade. The source
of the communication, known astheclient, and thereceiving daemon, known as
aserver, then exchange messages by using read message and write message
system calls. The close connection cal terminates the communication.

In the shared-memory model, processes use shared memary create and
shared memary attach system cdls to create and gain access to regions of
memory owned by other processes. Recall that, normally, the operating system
tries to prevent one process from accessing another processs memory. Shared
memory requires that two or more processes agree to remove this restriction.
They can then exchange information by reading and writing data in the shared
areas. Theform of the dataand the location are determined by the processes and
are not under the operating system's control. The processes are also responsible
for ensuring that they are not writing to the same location smultaneoudy. Such . -
mechanisms are discussed in Chapter 6. In Chapter 4, we look at a variation of
the process scheme—threads—in which memory is shared by defaullt.

Both of the models just discussed are common in operating systems,
and most systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. It isaso easier to
implement than is shared memory for intercomputer communication. Shared
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memory allows maximum speed and convenience of communication, since it
can be done at memory speeds when it takes place within a computer. Problems
exist, however, in the areas of protection and synchronization between the
processes sharing memory.

System Programs

Another aspect of amodern system is the collection of system programs. Recall
Figure 1.1, which depicted the logical computer hierarchy. At the lowest level is
hardware. Next is the operating system, then the system programs, and finaly
the application programs. System programs provide a convenient environment
for program development and execution. Some of them are simply user
interfaces to system calls, others are considerably more complex. They can
be divided into these categories:

* File management. These programs create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories.

+ Status information. Some programs simply ask the system for the date,
time, amount of available memory or disk space, number of users, or
similar status information. Others are more complex, providing detailed
performance, logging, and debugging information. Typically, these pro-
grams format and print the output to the terminal or other output devices
or files or display itin a window of the GUI. Some systems also support a
registry, which is used to store and retrieve configuration information.

» File modification. Severa text editors may be available to create and
modify the content of files stored on disk or other storage devices. There
may aso be special commands to search contents of files or perform
transformations of the text.

* Programming-language support. Compilers, assemblers, debuggers and
interpreters for common programming languages (such as C, C++, Java,
Visual Basic, and PERL) are often provided to the user with the operating
system.

* Program loading and execution. Once a program is assembled or com-
piled, it must be loaded into memory to be executed. The system may
provide absolute loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher-level languages or machine
language are needed as well.

* Communications. These programs provide the mechanism for creating
virtual connections among processes, users, and computer systems. They
allow users to send messages to one another's screens, to browse web
pages, to send electronic-mail messages, to log in remotely, or to transfer. .
files from one machine to another.

In addition to systems programs, most operating systems are supplied
with programs that are useful in solving common problems or performing
common operations. Such programs include web browsers, word processors
and text formatters, spreadsheets, database systems, compilers, plotting and
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statistical-analysis packages, and games. These programs are known as system
utilities or application programs.

The view of the operating system seen by most users is defined by the
application and system programs, rather than by the actual system calls.
Consider PCs. When his computer is running the Mac OS X operating system, a
user might see the GUI, featuring amouse and windows interface. Alternatively,
or evenin one of the windows, he might have a command-line UNIX shell. Both
use the same set of system calls, but the system calls look different and act in
different ways.

Operating-System Design and Implementation

In this section, we discuss problems we face in designing and implementing an
operating system. There are, of course, no complete solutions to such problems,
but there are approaches that have proved successful.

2.6.1 Design Goals

The first problem in designing a system is to define goals and specifications.
At the highest level, the design of the system will be affected by the choice of
hardware and the type of system: batch, time shared, single user, multiuser,
distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to
specify. The requirements can, however, be divided into two basic groups: user
goals and system goals.

Users desire certain obvious propertiesin a system: The system should be
convenient to use, easy to learn and to use, reliable, safe, and fast. Of course,
these specifications are not particularly useful in the system design, since there
is no general agreement on how to achieve them.

A similar set of requirements can be defined by those people who must
design, create, maintain, and operate the system: The system should be easy
to design, implement, and maintain; it should be flexible, reliable, error free,
and efficient. Again, these requirements are vague and may be interpreted in
various ways.

There is, in short, no unique solution to the problem of defining the
requirements for an operating system. The wide range of systems in existence
shows that different requirements can result in a large variety of solutions for
different environments. For example, the requirements for VxWorks, a real-
time operating system for embedded systems, must have been substantially
different from those for MVS a large multiuser, multiaccess operating system
for IBM mainframes.

Specifying and desighing an operating system is a highly creative task.
Although no textbook can tell you how to do it, general principles have
been developed in the field of software engineering, and we turn now to
a discussion of some of these principles.

2.6.2 Mechanisms and Policies

One important principle is the separation of policy from mechanism. Mecha-
nisms determine how to do something; policies determine what will be done.
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For exampl e, the timer construct (see Section 1.5.2) is amechanism for ensuring
CPU protection, but deciding how long the timer is to be set for a particular
user is apolicy decision.

The separation of policy and mechanism isimportant for flexibility. Policies
are likely to change across places or over time. In the worst case, each change
in policy would require a change in the underlying mechanism. A general
mechanism insensitive to changesin policy would be more desirable. A change
in policy would then require redefinition of only certain parameters of the
system. For instance, consider a mechanism for giving priority to certain types
of programs over others. If the mechanism is properly separated from policy,
it can be used to support a policy decision that 1/0-intensive programs should
have priority over CPU-intensive ones or to support the opposite policy.

Microkernel-based operating systems (Section 2.7.3) take the separation of
mechanism and policy to one extreme by implementing abasic set of primitive
building blocks. These blocks are almost policy free, allowing more advanced
mechanisms and policies to be added via user-created kernel modules or via
user programs themselves. As an example, consider the history of UNIX. At
first, it had atime-sharing scheduler. In the latest version of Solaris, scheduling
is controlled by loadable tables. Depending on the table currently loaded,
the system can be time shared, batch processing, real time, fair share, or
any combination. Making the scheduling mechanism general purpose allows
vast policy changes to be made with a single | oad-new-table command. At
the other extreme is a system such as Windows, in which both mechanism
and policy are encoded in the system to enforce a global look and fed. All
applications have similar interfaces, because the interface itself is built into
the kernel and system libraries. The Mac OS X operating system has similar
functionality.

Policy decisions are important for all resource allocation. Whenever it is
necessary to decide whether or not to allocate aresource, a policy decision must
be made. Whenever the question ishow rather than what, it is a mechanism that
must be determined.

2.6.3 Implementation

Once an operating system is designed, it must be implemented. Traditionally,
operating systems have been written in assembly language. Now, however,
they are most commonly written in higher-level languages such as C or C++.

The first system that was not written in assembly language was probably
the Master Control Program (MCP) for Burroughs computers. MCP was written
in a variant of ALGOL. MULTICS developed a MIT, was written mainly in
PL/1. The Linux and Windows XP operating systems are written mostly in C,
although there are some small sections of assembly code for device drivers and
for saving and restoring the state of registers.

The advantages of using a higher-level language, or at least a systems-
implementation language, for implementing operating systems are the same
as those accrued when the language is used for application programs: The
code can be written faster, is more compact, and is easier to understand and
debug. In addition, improvements in compiler technology will improve the
generated code for the entire operating system by simple recompilation. Finaly,
an operating system is far easier to port—to move to some other hardware—
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if it iswritten in a higher-level language. For example, MSDOS was wrftten in
Intel 8088 assembly language. Consequently, it is available on only the Intel
family of CPUs. The Linux operating system, in contrast, is written mostly in C
and is available on anumber of different CPUs, including Intel 80X86, Motorola
680X 0, SPARC, and MIPS RX000.

The only possible disadvantages of implementing an operating system in a
higher-level language are reduced speed and increased storage requirements.
This, however, is no longer a major issue in today's systems. Although an
expert assembly-language programmer can produce efficient small routines,
for large programs a modern compiler can perform complex analysis and apply
sophisticated optimizations that produce excellent code. Modern processors
have deep pipelining and multiple functional units that can handle complex
dependencies that can overwhelm the limited ability of the human mind to
keep track of details.

Asistruein other systems, major performance improvementsin operating
systems are more likely to be the result of better data structures and algorithms
than of excellent assembly-language code. In addition, although operating sys-
tems are large, only a small amount of the code is critical to high performance;
the memory manager and the CPU scheduler are probably the most critical rou-
tines. After the system iswritten and is working correctly, bottleneck routines
can be identified and can be replaced with assembly-language equivalents.

To identify bottlenecks, we must be able to monitor system performance.
Code must be added to compute and display measures of system behavior.
In a number of systems, the operating system does this task by producing
trace listings of system behavior. All interesting events are logged with their
time and important parameters and are written to a file. Later, an analysis
program can process the log file to determine system performance and to
identify bottlenecks and inefficiencies. These same traces can be run as input
for a simulation of a suggested improved system. Traces also can help people
to find errors in operating-system behavior.

Operating-System Structure

A system as large and complex as a modern operating system must be
engineered carefully if it is to function properly and be modified easly. A
common approach is to partition the task into small components rather than
have one monolithic system. Each of these modules should be a well-defined
portion of the system, with carefully defined inputs, outputs, and functions.
We have already discussed briefly in Chapter 1 the common components
of operating systems. In this section, we discuss how these components are
interconnected and melded into a kernel.

2.7.1 Simple Structure

Many commercial systems do not have well-defined structures. Frequently,
such operating systems started as small, simple, and limited systems and then
grew beyond their original scope. MSDOS is an example of such asystem. It was
originally designed and implemented by a few people who had no idea that it
would become so popular. It was written to provide the most functionality in
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the least space, so it was not divided into modules carefully. Figure 2.10 shows
its structure.

In MSDQS the interfaces and levels of functionality are not well separated.
For instance, application programs are able to access the basic 1/0 routines
to write directly to the display and disk drives. Such freedom |leaves MSDOS
vulnerable to errant (or malicious) programs, causing entire system crashes
when user programs fail. Of course, MSDOS was also limited by the hardware
of its era. Because the Intel 8088 for which it was written provides no dual
mode and no hardware protection, the designers of MSDOS had no choice but
to leave the base hardware accessible.

Another example of limited structuring is the original UNIX operating
system. UNIX is another system that initially was limited by hardware function-
ality. It consists of two separable parts: the kernel and the system programs.
The kernel is further separated into a series of interfaces and device drivers,
which have been added and expanded over the years as UNIX has evolved. We
can view the traditional UNIX operating system as being layered, as shown in
Figure 2.11. Everything below the system call interface and above the physical
hardware is the kernel. The kernel provides the file system, CRU scheduling,
memory management, and other operating-system functions through system
cals. Taken in sum, that is an enormous amount of functionality to be com-
bined into one level. This monolithic structure was difficult to implement and
maintain.

2.7.2 Layered Approach

With proper hardware support, operating systems can be broken into pieces
that are smaller and more appropriate than those allowed by the original
MSDOS or UNIX systems. The operating system can then retain much greater
control over the computer and over the applications that make use of that
computer. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems. Under the top-
down approach, the overall functionality and features are determined and are
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Figure 2,11 UNIX system structure.

separated into components. Information hiding is also important, because it
leaves programmers free to implement the low-level routines as they see fit,
provided that the external interface of the routine stays unchanged and that
the routine itsalf performs the advertised task.

A system can be made modular in many ways. One method is the layered
approach, in which the operating system is broken up into a number of layers
(levels). The bottom layer (layer 0) is the hardware; the highest (layer N) is the
user interface. This layering structure is depicted in Figure 2.12.

An operating-system layer is an implementation of an abstract object made
up of data and the operations that can manipulate those data. A typical
operating-system layer—say, layer M—consists of data structures and a set
of routines that can be invoked by higher-level layers. Layer M, in turn, can
invoke operations on lower-level layers.

The main advantage of the layered approach is simplicity of construction
and debugging. The layers are selected so that each uses functions (operations)
and services of only lower-level layers. This approach simplifies debugging
and system verification. The first layer can be debugged without any concern
for the rest of the system, because, by definition, it uses only the basic hardware
(which is assumed correct) to implement its functions. Once the first layer is
debugged, its correct functioning can be assumed while the second layer is
debugged, and so on. If an error is found during the debugging of a particular
layer, the error must be on that layer, because the layers below it are already
debugged. Thus, the design and implementation of the system is simplified.”

Each layer isimplemented with only those operations provided by lower-
level layers. A layer does not need to know how these operations are
implemented; it needs to know only what these operations do. Hence, each
layer hides the existence of certain data structures, operations, and hardware
from higher-level layers.

The major difficulty with the layered approach involves appropriately
defining the various layers. Because a layer can use only lower-level layers,
careful planning is necessary. For example, the device driver for the backing
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store (disk space used by virtual-memory algorithms) must be at a lower
level than the memory-management routines, because memory management
requires the ability to use the backing store.

Other requirements may not be so obvious. The backing-store driver would
normally be above the CPU scheduler, because the driver may need to wait for
170 and the CPU can be rescheduled during this time. However, on a large
system, the CPU scheduler may have more information about al the active
processes than can fit in memory. Therefore, this information may need to be
swapped in and out of memory, requiring the backing-store driver routine to
be below the CRU scheduler.

A fina problem with layered implementations is that they tend to be less
efficient than other types. For instance, when a user program executes an 1/0
operation, it executes a system call that is trapped to the 1/0 layer, which calls
the memory-management layer, which in turn cals the CPU-scheduling layer,
which is then passed to the hardware. At each layer, the parameters may be
modified, data may need to be passed, and so on. Each layer adds overhead to
the system call; the net result is a system call that takes longer than does one
on a nonlayered system.

These limitations have caused a small backlash against layering in recent
years. Fewer layers with more functionality are being designed, providing most
of the advantages of modularized code while avoiding the difficult problems
of laver definition and interaction.

2.7.3 Microkernels

We have already seen that as UNIX expanded, the kernel became large
and difficult to manage. In the mid-1980s, researchers at Carnegie Mellon
University developed an operating system called Mach that modularized
the kernel using the microkernel approach. This method structures the
operating system by removing al nonessential components from the kernel and
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implementing them as system and user-level programs. The result is a smaller
kernel. There is little consensus regarding which services should remain in the
kernel and which should be implemented in user space. Typically, however,
microkernels provide minimal process and memory management, in addition
to a communication facility.

The main function of the microkernel is to provide a communication facility
between the client program and the various services that are also running
in user space. Communication is provided by message passing, which was
described in Section 2.4.5. For example, if the client program wishes to access
afile, it must interact with the file server. The client program and service never
interact directly. Rather, they communicate indirectly by exchanging messages
with the microkernel.

One benefit of the microkernel approach is ease of extending the operating
system. All new services are added to user space and consequently do not
require modification of the kernel. When the kernel does have to be modified,
the changes tend to be fewer, because the microkernel is a smaller kernel.
The resulting operating system is easier to port from one hardware design
to another. The microkernel also provides more security and reliability, since
most services are running as user—rather than kernel—processes. |f a service
fails, the rest of the operating system remains untouched.

Several contemporary operating systems have used the microkernel
approach. Tru64 UNIX (formerly Digital UNIX) provides a UNIX interface to
the user, but it is implemented with a Mach kernel. The Mach kernel maps
UNIX system calls into messages to the appropriate user-level services.

Another example is QNX. QNX is a real-time operating system that is also
based on the microkernel design. The QNX microkernel provides services
for message passing and process scheduling. It also handles low-level net-
work communication and hardware interrupts. All other services in QNX are
provided by standard processes that run outside the kernel in user mode.

Unfortunately, microkernels can suffer from performance decreases due
to increased system function overhead. Consider the history of Windows NT.
The first release had a layered microkernel organization. However, this version
delivered low performance compared with that of Windows 95. Windows NT
4.0 partially redressed the performance problem by moving layers from user
space to kernel space and integrating them more closely. By the time Windows
XP was designed, its architecture was more monolithic than microkernel.

2.7.4 Modules

Perhaps the best current methodology for operating-system design involves
using object-oriented programming techniques to create a modular kernel.
Here, the kernel has a set of core components and dynamically links in
additional services either during boot time or during run time. Such a
strategy uses dynamically loadable modules and is common in modern
implementations of UNIX, such asSolaris, Linux, and Mac 0s X. For example, the™"
Solaris operating system structure, shown in Figure 2.13, is organized around
a core kernel with seven types of loadable kernel modules:

1. Scheduling classes
2. File systems
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3. Loadable system calls
4. Executable formats

5. STREAMS modules

6. Miscellaneous

7. Device and bus drivers

Such a design allows the kernel to provide core services yet also allows
certain features to be implemented dynamically. For example, device and
bus drivers for specific hardware can be added to the kernel, and support
for different file systems can be added as loadable modules. The overall
result resembles a layered system in that each kernel section has defined,
protected interfaces; but it is more flexible than a layered system in that any
module can cal any other module. Furthermore, the approach is like the
microkernel approach in that the primary module has only core functions
and knowledge of how to load and communicate with other modules; but it
is more efficient, because modules do not need to invoke message passing in
order to communicate.

The Apple Macintosh Mac OS X operating system uses a hybrid structure.
Mac OS X (aso known as Dartwin) structures the operating system using a
layered technique where one layer consists of the Mach microkernel. The
structure of Mac OS X appearsin Figure 2.14.

The top layers include application environments and a set of services
providing agraphical interface to applications. Below these layersisthe kernel
environment, which consists primarily of the Mach microkernel and the B
kernel. Mach provides memory management; support for remote procedure
cals (RPCs) and interprocess communication (IPC) facilities, including message
passing; and thread scheduling. The B®D component provides a BD command
line interface, support for networking and file systems, and an implementation
of Posix APIs including Pthreads. In addition to Mach and B, the kernel
environment provides an 1/0 kit for development of device drivers and
dynamically loadable modul es (which Mac OS X refersto asker nel extensions).
As shown in the figure, applications and common services can make use of
either the Mach or BD facilities directly.
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Virtual Machines

Thelayered approach described in Section 2.7.2 is taken to its logical conclusion
in the concept of a virtual machine. The fundamental idea behind a virtual
machine is to abstract the hardware of a single computer (the CPU, memory,
disk drives, network interface cards, and so forth) into several different
execution environments, thereby creating the illusion that each separate
execution environment is running its own private computer.

By using CRU scheduling (Chapter 5) and virtual-memory techniques
(Chapter 9), an operating system can create the illusion that a process has
its own processor with its own (virtual) memory. Normally, a process has
additional features, such as system calls and afile system, that are not provided
by the bare hardware. The virtual-machine approach does not provide any such
additional functionality but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of
the underlying computer (Figure 2.15).

There are several reasons for creating a virtual machine, all of which
are fundamentally related to being able to share the same hardware yet run
several different execution environments (that is, different operating systems)
concurrently. Wewill explore the advantages of virtual machinesin more detail
in Section 2.8.2. Throughout much of this section, we discuss the VM operating
system for IBM systems, as it provides a useful working example; furthermore
IBM pioneered the work in this area.

A magjor difficulty with the virtual-machine approach involves disk sys-
tems. Suppose that the physical machine has three disk drives but wants to
support seven virtual machines. Clearly, it cannot alocate a disk drive to
each virtual machine, because the virtual-machine software itsdf will need
substantial disk space to provide virtual memory and spooling. The solution
is to provide virtual disks—termed minidisks in IBM's VM operating system-
—that are identical in al respects except size. The system implements each
minidisk by allocating as many tracks on the physical disks as the minidisk
needs. Obviously, the sum of the sizes of al minidisks must be smaller than
the size of the physical disk space available.

Users thus are given their own virtual machines. They can then run any of
the operating systems or software packages that are available on the underlying
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machine. For the IBM VM system, a user normally runs CMS—a single-user
interactive operating system. The virtual-machine software is concerned with
multiprogramming multiple virtual machines onto a physical machine, but it
does not need to consider any user-support software. This arrangement may
provide a useful way to divide the problem of designing a multiuser interactive
system into two smaller pieces.

2.8.1 Implementation

Although the virtual-machine concept is useful, it is difficult to implement.
Muchwork isrequired to provide an exact duplicate of the underlying machine.
Remember that the underlying machine has two modes: user mode and kernel
mode. The virtual-machine software can run in kernel mode, since it is the
operating system. The virtual machine itself can execute in only user mode.
Just as the physical machine has two modes, however, so must the virtual
machine. Consequently, we must have a virtual user mode and avirtual kernel
mode, both of which run in a physical user mode. Those actions that cause a
transfer from user mode to kernel mode on a real machine (such as a system
cal or an attempt to execute a privileged instruction) must also cause atransfer
from virtual user mode to virtual kernel mode on a virtual machine.

Such a transfer can be accomplished as follows. When a system call, for
example, is made by a program running on a virtual machine in virtual user
mode, it will cause a transfer to the virtual-machine monitor inthereal machine-
When the virtual-machine monitor gains control, it can change the register
contents and program counter for the virtual machine to simulate the effect of
the system call. It can then restart the virtual machine, noting that it is now in
virtual kernel mode.

The major difference, of course, is time. Whereas the real 1/0 might have
taken 100 milliseconds, the virtual 1/0 might take less time (because it is
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spooled) or more time (because it is interpreted). In addition, the CPU is
being multiprogrammed among many virtual machines, further slowing down
the virtual machines in unpredictable ways. In the extreme case, it may be
necessary to simulate all instructions to provide a true virtual machine. vm
works for IBM machines because normal instructions for the virtual machines
can execute directly on the hardware. Only the privileged instructions (needed
mainly for 1/0) must be simulated and hence execute more slowly.

2.8.2 Benefits

The virtual-machine concept has several advantages. Notice that, in this
environment, there is complete protection of the various system resources.
Each virtual machine is completely isolated from all other virtual machines,
so there are no protection problems. At the same time, however, there is no
direct sharing of resources. Two approaches to provide sharing have been
implemented. First, it is possible to share a minidisk and thus to share files.
This scheme is modeled after a physical shared disk but is implemented by
software. Second, it is possible to define a network of virtual machines, each
of which can send information over the virtual communications network.
Again, the network is modeled after physical communication networks but
is implemented in software.

Such a virtual-machine system is a perfect vehicle for operating-systems
research and development. Normally, changing an operating system is a
difficult task. Operating systems are large and complex programs, and it is
difficult to be sure that a change in one part will not cause obscure bugs
in some other part. The power of the operating system makes changing it
particularly dangerous. Because the operating system executes in kernel mode,
awrong change in a pointer could cause an error that would destroy the entire
file system. Thus, it is necessary to test all changes to the operating system
carefully.

The operating system, however, runs on and controls the entire machine.
Therefore, the current system must be stopped and taken out of use while
changes are made and tested. This period is commonly caled system-
development time. Since it makes the system unavailable to users, system-
development timeis often scheduled late at night or on weekends, when system
load is low.

A virtual-machine system can eliminate much of this problem. System
programmers are given their own virtual machine, and system development is
done on the virtual machine instead of on a physical machine. Normal system
operation seldom needs to be disrupted for system development.

2.8.3 Examples

Despite the advantages of virtual machines, they received little attention -
for a number of years after they were first developed. Today, however,
virtual machines are coming back into fashion as a means of solving system
compatibility problems. In this section, we explore two popular contemporary
virtual machines; VMware and the Java virtual machine. As we will see,
these virtual machines typically run on top of an operating system of any of
the design types discussed earlier. Thus, operating system design methods—
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simple layers, microkernel, modules, and virtual machines—are not mutually
exclusive.

2831 VMware

VMware is a popular commercial application that abstracts Intel 80X86
hardware into isolated virtual machines. VMware runs as an application on a
host operating system such as Windows or Linux and allows this host system
to concurrently run several different guest operating systems as independent
virtual machines.

Consider the following scenario: A developer has designed an application
and would liketo testit on Linux, FreeBSD, Windows NT, and Windows XP. One
option is for her to obtain four different computers, each running a copy of one
of these operating systems. Another alternative is for her first to install Linux
on a computer system and test the application, then to install FreeBSD and test
the application, and so forth. This option allows her to use the same physical
computer but is time-consuming, since she must install anew operating system
for each test. Such testing could be accomplished concurrently on the same
physical computer using VMware. In this case, the programmer could test the
application on a host operating system and on three guest operating systems
with each system running as a separate virtual machine.

The architecture of such a system is shown in Figure 2.16. In this scenario,
Linux is running as the host operating system; FeeBSD, Windows NT, and
Windows XP are running as guest operating systems. The virtualization layer
is the heart of VMware, as it abstracts the physical hardware into isolated
virtual machines running as guest operating systems. Each virtual machine
has its own virtual CPU, memory, disk drives, network interfaces, and so forth.

application application application application

guest operating guest operating guest operating
system system system

(free BSD) (Windows NT) (Windows XP)

virtual CPU virtual CPU virtual CPU;

virtual memory virtual memory virtual memory

virtual devices virtual devices virtual devices

virtualization layer

, l

host operating system
(Linux)
hardware
CcPU [ /0 devices |

Figure 2.16 VMware architecture.
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2.8.3.2 TheJava Virtual Machine *

Java is a popular object-oriented programming language introduced by Sun
Microsystems in 1995. In addition to a language specification and a large AR
library, Java also provides a specification for a Java virtual machine—or VM.

Java objects are specified with the class construct; a Java program
consists of one or more classes. For each Java class, the compiler produces
an architecture-neutral bytecode output (.class) file that will run on any
implementation of the WM.

The VMis a specification for an abstract computer. It consists of a class
loader and a Java interpreter that executes the architecture-neutral bytecodes,
as diagrammed in Figure 2.17. The class loader loads the compiled . class
files from both the Java program and the Java AR for execution by the Java
interpreter. After a class is loaded, the verifier checks that the . class file is
valid Java bytecode and does not overflow or underflow the stack. It also
ensures that the bytecode does not perform pointer arithmetic, which could
provide illegal memory access. If the class passes verification, it is run by the
Java interpreter. The WM also automatically manages memory by performing
gar bage collection—the practice of reclaiming memory from objects no longer
in use and returning it to the system. Much research focuses on garbage
collection algorithms for increasing the performance of Java programs in the
virtual machine.

The M may be implemented in software on top of a host operating
system, such as Windows, Linux, or Mac OS X, or as part of a web browser.
Alternatively, the ¥M may be implemented in hardware on a chip specificaly
designed to run Java programs. If the M is implemented in software, the
Java interpreter interprets the bytecode operations one at a time. A faster
software technique is to use ajust-in-time (JIT) compiler. Here, the first time a
Java method is invoked, the bytecodes for the method are turned into native
machine language for the host system. These operations are then cached so that
subsequent invocations of a method are performed using the native machine
instructions and the bytecode operations need not be interpreted al over again.
A technique that is potentially even faster isto run the ¥M in hardware on a
special Java chip that executes the Javabytecode operations as native code, thus
bypassing the need for either a software interpreter or ajust-in-time compiler.

Java program > ss .
--4-w Class loader |« +~§--
.class fites : _ =

Java
-5 | interpreter

¥

Figure 2.17 The Java virtud machine.
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TH E NET FRAM EWOR K

“The: NET Framework is a c:ollectmn ¢

program wrrtten for the NET Framework need. worry about the specifics-
of the hardare or the operating system on which it will run, Thus, any "~
architecture. implementing .NET will. be able to successfully execute the...
program, This is because the execution environment abstracts these details
and provides a virtual machine as an-intermediary between the executt ng -
program and the underlying acchitecture. .

At the core of the .NET Framework is the Common Language Runtrme
(CLR). The CLR istheimplementation of the .NET virtual machine, Itprovrdes';j:
an envrronment for execution of programs J

execution of a program the CLR toads: assemblres mto what: |s knowh.as
the Application Domain. As instructions are requested by the executing
program, the CLR converts the MSIL instructions inside the assemblies into
native code that is specific to the underlying arcliitecture using just-in-time
compilation. Once instructions have been converted to native code, they are
kept and will continue to run as native code for the CPU.- The architecture of
the CLR for the .NET framework is shown in Figure 2.18.

CHt VBNet |- .
Source source |-
compilation l : 1 : :
MS-IL - | MS-IL
assembly assembly
CLR Y \J

just-in-time compiler

f 3

host system

Figure 2.18 Architecture of the. CLR for the NET Framework
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Operating-System Generation ’

It is possible to design, code, and implement an operating system specifically
for one machine at one site. More commonly, however, operating systems
are designed to run on any of a class of machines at a variety of sites with
a variety of peripheral configurations. The system must then be configured
or generated for each specific computer site, a process sometimes known as
system gener ation (SY SGEN).

The operating system is normally distributed on disk or CD-ROM. To
generate a system, we use a special program. The SYSGEN program reads from
a given file, or asks the operator of the system for information concerning the
specific configuration of the hardware system, or probes the hardware directly
to determine what components are there. The following kinds of information
must be determined.

* What CPU is to be used? What options (extended instruction sets, floating-
point arithmetic, and so on) are installed? For multiple CPU systems, each
CRU must be described.

* How much memory is available? Some systems will determine this value
themselves by referencing memory location after memory location until an
"illegal address" fault is generated. This procedure defines the find legal
address and hence the amount of available memory.

* What devices are available? The system will need to know how to address
each device (the device number), the device interrupt number, the device's
type and model, and any specia device characteristics.

* What operating-system options are desired, or what parameter values are
to be used? These options or values might include how many buffers of
which sizes should be used, what type of CPU-scheduling algorithm is
desired, what the maximum number of processes to be supported is, and
soon.

Once thisinformation is determined, it can be used in several ways. At one
extreme, asystem administrator can useit to modify a copy of the source code of
the operating system. The operating system then is completely compiled. Data
declarations, initializations, and constants, along with conditional compilation,
produce an output object version of the operating system that is tailored to the
system described.

At a dlightly less tailored level, the system description can cause the
creation of tables and the selection of modules from a precompiled library.
These modules are linked together to form the generated operating system.
Selection allows the library to contain the device drivers for al supported 1/0
devices, but only those needed are linked into the operating system. Because.
the system is not recompiled, system generation is faster, but the resulting
system may be overly general.

At the other extreme, it is possible to construct a system that is completely
table driven. All the code is always part of the system, and selection occurs at
execution time, rather than at compile or link time. System generation involves
simply creating the appropriate tables to describe the system.
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The major differences among these approaches are the size and geneyality
of the generated system and the ease of modification as the hardware
configuration changes. Consider the cost of modifying the system to support a
newly acquired graphics terminal or another disk drive. Balanced against that
cost, of course, is the frequency (or infrequency) of such changes.

System Boot

After an operating system is generated, it must be made available for use by
the hardware. But how does the hardware know where the kernel is or how to
load that kernel? The procedure of starting a computer by loading the kernel
is known as booting the system. On most computer systems, a small piece of
code known as the bootstrap program or bootstrap loader locates the kernel,
loads it into main memory, and starts its execution. Some computer systems,
such as PCs, use a two-step process in which a simple bootstrap loader fetches
a more complex boot program from disk, which in turn loads the kernel.

When a CPU receives a reset event—for instance, when it is powered up
or rebooted —the instruction register is loaded with a predefined memory
location, and execution starts there. At that location is the initial bootstrap
program. This program is in the form of read-only memory (ROM), because
the RAM isin an unknown state at system startup. ROM is convenient because
it needs no initialization and cannot be infected by a computer virus.

The bootstrap program can perform a variety of tasks. Usualy, one task
is to run diagnostics to determine the state of the machine. If the diagnostics
pass, the program can continue with the booting steps. It can also initialize all
aspects of the system, from CRU registers to device controllers and the contents
of main memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, PDAs, and game consoles—store
the entire operating system in ROM. Storing the operating system in ROM is
suitable for small operating systems, simple supporting hardware, and rugged
operation. A problem with this approach is that changing the bootstrap code
requires changing the ROM hardware chips. Some systems resolve this problem
by using erasable programmable read-only memory (EPROM), which is read-
only except when explicitly given a command to become writable. All forms
of ROM are also known as firmware, since their characteristics fall somewhere
between those of hardware and those of software. A problem with firmware
in general is that executing code there is slower than executing code in RAM.
Some systems store the operating system in firmware and copy it to RAM for
fast execution. A fina issue with firmware is that it is relatively expensive, so
usually only small amounts are available.

For large operating systems (including most general-purpose operating
systems like Windows, Mac OS X, and UNIX) or for systems that change
frequently, the bootstrap loader is stored in firmware, and the operating system
is on disk. In this case, the bootstrap runs diagnostics and has a bit of code
that can read a single block at a fixed location (say block zero) from disk into
memory and execute the code from that boot block. The program stored in the
boot block may be sophisticated enough to load the entire operating system
into memory and begin its execution. More typically, it is simple code (as it fits
in a single disk block) and only knows the address on disk and length of the
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remainder of the bootstrap program. All of the disk-bound bootstrap, arid the
operating system itself, can be easily changed by writing new versions to disk.
A disk that has aboot partition (more on that in section 12.5.1) is called a boot
disk or system disk.

Now that the full bootstrap program has been loaded, it can traverse the
file system to find the operating system kernel, load it into memory, and start
its execution. It is only at this point that the system is said to be running.

Summary

Operating systems provide a number of services. At the lowest level, system
cdls dlow a running program to make requests from the operating system
directly. At a higher level, the command interpreter or shell provides a
mechanism for a user to issue arequest without writing a program. Commands
may come from files during batch-mode execution or directly from a terminal
when in an interactive or time-shared mode. System programs are provided to
satisfy many common user requests.

The types of requests vary according to level. The system-call level must
provide the basic functions, such as process control and file and device
manipulation. Higher-level requests, satisfied by the command interpreter or
system programs, aretrand ated into asequence of system calls. System services
can be dlassified into severa categories. program control, status requests, and
170 requests. Program errors can be considered implicit requests for service,

Once the system services are defined, the structure of the operating system
can be developed. Various tables are needed to record the information that
defines the state of the computer system and the status of the system's jobs.

The design of anew operating system is amgor task. It isimportant that
the gods of the system be well defined before the design begins. The type of
system desired is the foundation for choices among various algorithms and
strategies that will be needed.

Since an operating system is large, modularity is important. Designing a
gystem as a sequence of layers or using a microkerne is considered a good
technique. The virtual-machine concept takes the layered approach and treats
both the kernel of the operating system and the hardware as though they were
hardware. Even other operating systems may be loaded on top of this virtua
machine.

Throughout the entire operating-system design cycle, we must be careful
to separate policy decisons from implementation details (mechanisms). This
separation alows maximum flexibility if policy decisons are to be changed
later.

Operating systems are now amost aways written in a systems
implementation language or in a higher-level language. This feature improves
their implementation, maintenance, and portability. To creaste an operating .
system for a particular machine configuration, we must perform system
generation.

For a computer system to begin running, the CRU must initialize and start
executing the bootstrap program in firmware. The bootstrap can execute the
operating system directly if the operating system is aso in the firmware, or
it can complete a sequence in which it loads progressively smarter programs
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from firmware and disk until the operating system itself is loaded into memory
and executed.
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The services and functions provided by an operating system can be
divided into two main categories. Briefly describe the two categories
and discuss how they differ.

List five services provided by an operating system that are designed to
make it more convenient for users to use the computer system. In what
cases it would be impossible for user-level programs to provide these
services? Explain.

Describe three general methods for passing parameters to the operating
system.

Describe how you could obtain a statistical profile of the amount of time
spent by a program executing different sections of its code. Discuss the
importance of obtaining such a statistical profile.

What are the five mgjor activities of an operating system with regard to
file management?

What are the advantages and disadvantages of using the same system-
cal interface for manipulating both files and devices?

What is the purpose of the command interpreter? Why is it usually
separate from the kernel? Would it be possible for the user to develop
a new command interpreter using the system-call interface provided by
the operating system?

What are the two models of interprocess communication? What are the
strengths and weaknesses of the two approaches?

Why is the separation of mechanism and policy desirable?

Why does Java provide the ability to call from a Java program native
methods that are written in, say, C or C++? Provide an example of a
situation in which a native method is useful,

It is sometimes difficult to achieve a layered approach if two components
of the operating system are dependent on each other. Identify a scenario
in which it is unclear how to layer two system components that require
tight coupling of their functionalities.

What is the main advantage of the microkernel approach to system
design? How do user programs and system services interact in a
microkernel architecture? What are the disadvantages of using the
microkernel approach?

In what ways is the modular kernel approach similar to the layered
approach? In what ways does it differ from the layered approach?

What is the main advantage for an operating-system designer of using
a virtual-machine architecture? What is the main advantage for a user?
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215 Why isajust-in-time compiler useful for executing Java programs?

2.16 What is the relationship between a guest operating system and a host
operating system in a system like VMware? What factors need to be
considered in choosing the host operating system?

217 The experimental Synthesis operating system has an assembler incor-
porated in the kernel. To optimize system-call performance, the kernel
assembles routines within kernel space to minimize the path that the
system call must take through the kernel. This approach is the antithesis
of the layered approach, in which the path through the kernel is extended
to make building the operating system easier. Discuss the pros and cons
of the Synthesis approach to kernel design and system-performance
optimization. :

2.18 In Section 2.3, we described a program that copies the contents of onefile
to a destination file. This program works by first prompting the user for
the name of the source and destination files. Write this program using
either the Windows32 or POsix AP. Be sure to include all necessary
error checking, including ensuring that the source file exists. Once you
have correctly designed and tested the program, if you used a system
that supportsit, run the program using a utility that traces system calls.
Linux systems provide the ptrace utility, and Solaris systems use the
truss or dtrace command. On Mac OS X, the ktrace facility provides
similar functionality.

Project—Adding a System Call to the Linux Kernel

In this project, you will study the system call interface provided by the Linux
operating system and how user programs communicate with the operating
system kernel via this interface. Your task is to incorporate a new system call
into the kernel, thereby expanding the functionality of the operating system.

Getting Started

A user-mode procedure cal is performed by passing arguments to the called
procedure either on the stack or through registers, saving the current state and
the value of the program counter, and jumping to the beginning of the code
corresponding to the called procedure. The process continues to have the same
privileges as before.

System calls appear as procedure cals to user programs, but result in
a change in execution context and privileges. In Linux on the Intel 386
architecture, a system call is accomplished by storing the system call nhumber
into the EAX register, storing arguments to the system call in other hardware .
registers, and executing a trap instruction (which is the INT 0x80 assembly
instruction). After the trap is executed, the system call number is used to index
into a table of code pointers to obtain the starting address for the handler
code implementing the system call. The process then jumps to this address
and the privileges of the process are switched from user to kernel mode. With
the expanded privileges, the process can now execute kernel code that might



g

e

Exercises 75

include privileged instructions that cannot be executed in user mode, The
kernel code can then perform the requested services such as interacting with
1/0 devices, perform process management and other such activities that cannot
be performed in user mode.

The system call numbers for recent versions of the Linux kernel
are listed in /usr/src/linux~2.x/include/asm-i1386/unistd.h. (For
instance, _.NR_close, which corresponds to the system cal close()
that is invoked for closing a file descriptor, is defined as value 6.) The
list of pointers to system call handlers is typically stored in the file
/usr/src/linux-2.x/arch/i386/kernel/entry.S under the heading
ENTRY (sys_call table).Noticethat sys_closeis stored a entry numbered
6 in the table to be consistent with the system call number defined inunistd.h
file. (The keyword . long denotes that the entry will occupy the same number
of bytes as a data value of type long.)

Building a New Kernel

Before adding a system call to the kernel, you must familiarize yoursalf with
the task of building the binary for a kernel from its source code and booting
the machine with the newly built kernel. This activity comprises the following
tasks, some of which are dependent on the particular installation of the Linux
operating system.

« Obtain the kernel source code for the Linux distribution. If the source code
package has been previously installed on your machine, the corresponding
files might be available under /usr/src/linuxor /usr/src/linux-2.x
(where the suffix correspondsto the kernel version number). If the package
has not been installed earlier, it can be downloaded from the provider of
your Linux distribution or fromhttp://www. kernel. org.

e Learn how to configure, compile, and install the kernel binary. This
will vary between the different kernel distributions, but some typical
commands for building the kernel (after entering the directory where the
kernel source code is stored) include:

< meke xconfig
o meke dep
o make bzImage

e Add a new entry to the set of bootable kernels supported by the system.
The Linux operating system typically uses utilities such as1iloand grub
to maintain a list of bootable kernels, from which the user can choose
during machine boot-up. If your system supports lil o, add an entry to
lilo.conf, such as:

image=/boot/bzImage.mykernel
| abel =nyker nel

root=/dev/hdas

read-only

where /boot/bzImage. mykernel is the kernel image and mykernel is
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the label associated with the new kernel allowing you to choose it during
bootup process. By performing this step, you have the option of either
booting a new kernel or booting the unmodified kernel if the newly built
kernel does not function properly.

Extending Kernel Source

You can now experiment with adding a new file to the set of source files
used for compiling the kernel. Typically, the source code is stored in the
/usr/src/linux-2.x/kernel directory, although that location may differ in
your Linux distribution. There are two options for adding the system call.
The fird is to add the system call to an existing source file in this directory.
A second option is to create a new file in the source directory and modify
/usr/src/linux-2.x/kernel/Makefile to include the newly created file
in the compilation process. The advantage of the firs approach is that by
modifying an existing file that is already part of the compilation process, the
Makefile does not require modification.

Adding a System Call to the Kernel

Now that you are familiar with the various background tasks corresponding
to building and booting Linux kernels, you can begin the process of adding a
new system cdl to the Linux kernel. In this project, the system call will have
limited functionality; it will simply transition from user mode to kernel mode,
print a message that islogged with the kernel messages, and transition back to
user mode. Wewill cdl thisthehelloworld  system call. Whileit hasonly limited
functiondlity, it illustrates the system cal mechanism and sheds light on the
interaction between user programs and the kerndl.

e Create anew filecalledhelloworld. c to define your system call. Include
the header files1inux/linkage.h and linux/kernel . h. Add the follow-
ing code to thisfile

#include <linux/linkage.h>

#include <«<linux/kernel.hs>

asmlinkage int sys_helloworld() {
printk (KERN EMERG "hello world!");

return 1;
}

This creates asystem call with the name sys _helloworld ().If you choose

to add this system cdl to an existing file in the source directory, al that is

necessary is to add the sys_helloworld() function to the file you choose.

asmlinkage is a remnant from the days when Linux used both C++ .
and C code and is used to indicate that the code is written in C.

The printk () function is used to print messages to a kernd log file

and therefore may only be called from the kernel. The kernd mes-

sages gpecified in the parameter to printkO are logged in the file

/var/log/kernel/warnings. The function prototype for the printk()

cdl is defined in /usr/include/linux/kernel .h.
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e Define a new system call number for __NR helloworld in
/usr/src/linux-2.x/include/asm-i386/unistd.h. A USer program
can use this number to identify the newly added system call. Also be sure
to increment thevaluefor __NR_syscalls, whichisaso stored in the same
file. This constant tracks the number of system calls currently defined in
the kernel.

* Add an entry .long sys.helloworld to the sys call table defined
iN/usr/src/linux-2.x/arch/i386/kernel/entry.Sfile Asdiscussed
earlier, the system cal number is used to index into this table to find the
position of the handler code for the invoked system call.

» Add your filehelloworld. ¢ to the Makefile (if you created a new file for
your system cdl.) Save a copy of your old kernd binary image (in case
there are problems with your newly created kernel.) You can now build
the new kernel, rename it to distinguish it from the unmodified kerndl,
and add an entry to the loader configuration files (such as lilo.conf).
After completing these steps, you may now boot either the old kernd or
the new kernd that contains your system cdl inside it.

Using the System Call From a User Program

When you boot with the new kernd it will support the newly defined system
cdl; it isnow smply a matter of invoking this system cal from auser program.
Ordinarily, the standard C library supports an interface for system calls defined
for the Linux operating system. As your new system cdl is not linked into the
standard C library, invoking your system cal will require manual intervention.

As noted earlier, a system cdl is invoked by storing the appropriate value
into ahardwareregister and performing atrap instruction. Unfortunately, these
arelow-level operationsthat cannot be performed using C language statements
and instead require assembly instructions. Fortunately, Linux provides macros
for instantiating wrapper functions that contain the appropriate assembly
instructions. For instance, the following C program uses the _syscallo()
meacro to invoke the newly defined system cdll:

#i nclude <linux/errno.h>
#include <sys/syscall.h>
#i ncl ude <l i nux/unistd. h>

_syscallO(int, hel | oworl d);

main ()

{

helloworld () ;

» The _syscall10 macro takes two arguments. The firs specifies the type of
the value returned by the system cdll; the second argument is the name of
the system cdl. The name is used to identify the system cal number that
is stored in the hardware register before the trap instruction is executed.
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If your system call requires arguments, then a different macro (slich as
_syscall0, where the suffixindicates the number of arguments) could be
used to instantiate the assembly code required for performing the system
call.

* Compile and execute the program with the newly built kernel.
There should be a message "hello world!" in the kernel log file
/var/log/kernel/warnings to indicate that the system cal has
executed.

As a next step, consider expanding the functionality of your system call.
How would you pass an integer value or a character string to the system call
and have it be printed into the kernel log file? What are the implications for
passing pointers to data stored in the user program's address space as opposed
to simply passing an integer value from the user program to the kernel using
hardware registers?
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rocess
anagement

A process can be thought of as a program in execution, A process will
need certain resources—suchas CPU time, memory, files, and 1¥0 devices
-—to accomplish its task. These resources are allocated to the process
either when it is created or while it is executing.

A process is the unit of work in most systems. Systems consist of
a collection of processes: Operating-system processes execute system
code, and user processes execute user code. All these processes may
execute concurrently.

Although traditionally a process contained only a single thread of
control as it ran, most modern operating systems now support processes
that have multiple threads.

The operating system is responsible for the following activities in
connection with process and thread management: the creation and
deletion of both user and system processes; the scheduling of processes;
and the provision of mechanisms for synchronization, communication,
and deadlock handling for processes.






Processes

3.1

Early computer systems allowed only one program to be executed at a
time. This program had complete control of the system and had access to
al the system's resources. In contrast, current-day computer systems allow
multiple programs to be loaded into memory and executed concurrently.
This evolution required firmer control and more compartmentalization of the
various programs; and these needs resulted in the notion of a process, whichis
aprogram in execution. A process is the unit of work in amodern time-sharing
system.

The more complex the operating system s, the more it is expected to do on
behalf of its users. Although its main concern is the execution of user programs,
it also needs to take care of various system tasks that are better left outside the
kernel itself. A system therefore consists of a collection of processes: operating-
system processes executing system code and user processes executing user
code. Potentially, al these processes can execute concurrently, with the CRU (or
CPUs) multiplexed among them. By switching the CPU between processes, the
operating system can make the computer more productive.

CHAPTER OBJECTIVES

* To introduce the notion of a process — a program in execution, which forms
the basis of all computation.

» To describe the various features of processes, including scheduling,
creation and termination, and communication.

» To describe communication in client-server systems.

Process Concept

A question that arises in discussing operating systems involves what to call al
the CRU activities. A batch system executesjobs, whereas a time-shared system
has user programs, or tasks. Even on a single-user system such as Microsoft
Windows, a user may be able to run several programs at one time: a word
processor, aweb browser, and an e-mail package. Even if the user can execute
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only one program at a time, the operating system may need to suppoft its
own internal programmed activities, such as memory management. In many
respects, al these activities are similar, so we call al of them processes.

The terms job and process are used amost interchangeably in this text.
Although we personally prefer the term process, much of operating-system
theory and terminology was developed during a time when the major activity
of operating systems was job processing. It would be misleading to avoid
the use of commonly accepted terms that include the word job (such as job
scheduling) simply because process has superseded job. '

3.1.1 The Process

Informally, as mentioned earlier, aprocessis aprogram in execution. A process
is more than the program code, which is sometimes known as the text section.
It also includes the current activity, as represented by the value of the program
counter and the contents of the processor's registers. A process generally also
includes the process stack, which contains temporary data (such as function
parameters, return addresses, and local variables), and a data section, which
contains global variables. A process may also include a heap, which is memory
that isdynamically allocated during process runtime. The structure of aprocess
in memory is shown in Figure 3.1.

Weemphasize that aprogramby itself isnot aprocess; aprogramisapassive
entity, such as afile containing a list of instructions stored on disk (often called
an executablefile), whereas a processis an active entity, with aprogram counter
specifying the next instruction to execute and a set of associated resources. A
program becomes a process when an executable file is loaded into memory.
Two common techniques for loading executable files are double-clicking an
icon representing the executable file and entering the name of the executable
file on the command line (asin prog. exe or a. out.)

Although two processes may be associated with the same program, they
are nevertheless considered two separate execution sequences. For instance,

max
Stack
heap
data
text
0 .

Figure 3.1 Process in memory.
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Figure 3.2 Diagram of process state.

several users may be running different copies of the mail program, or the same
user may invoke many copies of the web browser program. Each of these is a
separate process; and although the text sections are equivalent, the data, heap,
and stack sections vary. It isaso common to have a process that spawns many
processes as it runs. We discuss such matters in Section 3.4.

3.1.2 Process State

As a process executes, it changes state. The state of a process is defined in
part by the current activity of that process. Each process may be in one of the
following states:

* New. The process is being created.
* Running. Instructions are being executed.

» Waiting. The process is waiting for some event to occur (such as an1/0
completion or reception of a signal).

* Ready. The process is waiting to be assigned to a processor.
» Terminated. The process has finished execution.

These names are arbitrary, and they vary across operating systems. The states
that they represent are found on all systems, however. Certain operating
systems also more finely delineate process states. It is important to realize
that only one process can be running on any processor at any instant. Many
processes may be ready and limiting, however. The state diagram corresponding
to these statesis presented in Figure 3.2.

3.1.3 Process Control Block

Each processisrepresented in the operating system by a process control block
(rCcB)—also called atask control block. A PCB isshown in Figure 3.3. It contains
many pieces of information associated with a specific process, including these:

* Process state. The state may be new, ready, running, waiting, halted, and
soon.
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Figure 3.3 Process control block (PCB).

* Program counter. The counter indicates the address of the next instruction
to be executed for this process.

 CPU registers. The registers vary in number and type, depending on
the computer architecture. They include accumulators, index registers,
stack pointers, and general-purpose registers, plus any condition-code
information. Along with the program counter, this state information must
be saved when an interrupt occurs, to allow the process to be continued
correctly afterward (Figure 3.4).

* CPU-scheduling information. Thisinformation includes a process priority,
pointers to scheduling queues, and any other scheduling parameters.
(Chapter 5 describes process scheduling.)

* Memory-management information. This information may include such
information as the value of the base and limit registers, the page tables,
or the segment tables, depending on the memory system used by the
operating system (Chapter 8).

* Accounting information. This information includes the amount of CRU
and real time used, time limits, account numbers, job or process numbers,
and so on.

e /O status information. This information includes the list of 1/0 devices
allocated to the process, alist of open files, and so on.

In brief, the RCB simply serves as the repository for any information that may
vary from process to process.

3.1.4 Threads

The process model discussed so far has implied that a process is a program
that performs a single thread of execution. For example, when a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one
task at one time. The user cannot simultaneously type in characters and run the
spell checker within the same process, for example. Many modern operating
systems have extended the process concept to allow a process to have multiple
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Figure 3.4 Diagram showing CPU switch from process to process.

threads of execution and thus to perform more than one task at a time. Chapter
4 explores multithreaded processes in detail.

Process Scheduling

The objective of multiprogramming is to have some process running at al
times, to maximize CPU utilization. The objective of time sharing isto switch the
CPU among processes so frequently that users can interact with each program
while it is running. To meet these objectives, the process scheduler selects
an available process (possibly from a set of several available processes) for
program execution on the CPU. For a single-processor system, there will never
be more than one running process. If there are more processes, the rest will
have to wait until the CPU is free and can be reschedul ed.

3.2.1 Scheduling Queues

As processes enter the system, they are put into ajob queue, which consists
of al processes in the system. The processes that are residing in main memory
and are ready and waiting to execute are kept on a list called the ready queue.
This queue is generally stored as a linked list. A ready-queue header contains
pointers to the firgt and final FCBs in the list. Each RCB includes a pointer field
that points to the next FCB in the ready queue.

The system aso includes other queues. When a process is alocated the
CRU, it executes for a while and eventually quits, is interrupted, or waits for
the occurrence of a particular event, such as the completion of an 1/0 request.
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PROCESS REPRESENTATION IN LINUX

The process control block in the Linux operating system is represented
by the C structure tagk. struct; This structure contains dl the necessary
information for ‘representing-a process, including the state of the process, ™
scheduling and memory . management .information, . list .of.open files .and .
pointers to the process's parent and any of its children. (A processspgreint IS
the process that created it; itschil dren areany prthat it créafes) Someé
of these fidds include: .

pid_t pid; /* process identifier */ =~

long state; /# .state of the process */ .

unsigned int time.slice /* scheduling information */
struct files_struct *files; /% list of open files */
struct mm_struct- *mm; -/*e address space of-t_his p_roces_s-*/

For example, the state of a procms is reprmted by th ' fleld long st ate
in thisstructure. Within:the Linux kernd, al active® processes are repreﬁented“'
using adoubly linkéd list of task _struct, and thekerne maintainsiapointer

. —current — to theprocesscurrently executing on thewstem Th|S|sshown

in Fgure3 5.
) NN
struct task_struct struct task_struct oo struct task_struct
process information process information | 4 & a process information
* * o 1 -
* LJ ; -
. * L Lo [ .
' rclrrent

(currently executing proccess)

Flgure 3 5 Actlve processe' in: Llnux IR L

Asar |Ilustrat|0n of: how the kerndl mlght mani pulate one' of the flelds in
thetask_struct for aspec:fled process, let's assume the system:would like
to change the state of the process currently running to the value new sgtate.
If current isapointer to the process currently executing, its stateiis changed
with the follovvmg :

current->state = _new_state;;j

Suppose the process makes an 1/0 request to a shared device, such as a disk.
Since there are many processes in the system, the disk may be busy with the
1/0 request of some other process. The process therefore may have to wait for
the disk. The list of processes waiting for a particular 1/0 device is called a
device queue. Each device has its own device queue (Figure 3.6).
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Figure 3.6 The ready queue and various I/O device queues.

A common representation for a discussion of process scheduling is a
queueing diagram, such as that in Figure 3.7. Each rectangular box represents
a queue. Two types of queues are present: the ready queue and a set of device
queues. The circles represent the resources that serve the queues, and the
arrows indicate the flow of processes in the system.

A new process is initially put in the ready queue. It waits there until it is
selected for execution, or is dispatched. Once the process is allocated the CRU
and is executing, one of several events could occur:

» The process could issue an1/0 request and then be placed in an1/0 queue.

* The process could create a new subprocess and wait for the subprocess's
termination.

» The process could be removed forcibly from the CRU, as a result of an
interrupt, and be put back in the ready queue.

In the first two cases, the process eventually switches from thewaiting state

to the ready state and is then put back in the ready queue. A process continues

this cycle until it terminates, at which time it is removed from all queues and - -

has its PCB and resources deallocated.

3.2.2 Schedulers

A process migrates among the various scheduling queues throughout its
lifetime. The operating system must select, for scheduling purposes, processes



88

Chapter 3  Processes

ready queue

Figure 3.7 Queueing-diagram representation of process scheduling.

from these queues in some fashion. The selection process is carried out by the
appropriate scheduler.

Often, in abatch system, more processes are submitted than can be executed
immediately. These processes are spooled to a mass-storage device (typicaly a
disk), where they are kept for later execution. The long-term scheduler, or job
scheduler, selects processes from this pool and loads them into memory for
execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute and allocates the CRU to one of them.

The primary distinction between these two schedulers lies in frequency
of execution. The short-term scheduler must select a new process for the CRU
frequently. A process may execute for only a few milliseconds before waiting
for an 170 request. Often, the short-term scheduler executes at least once every
100 milliseconds. Because of the short time between executions, the short-term
scheduler must be fast. If it takes 10 milliseconds to decide to execute a process
for 100 milliseconds, then 10/(100 + 10) = 9 percent of the CRU is being used
(wasted) simply for scheduling the work.

The long-term scheduler executes much less frequently; minutes may sep-
arate the creation of one new process and the next. The long-term scheduler
controls the degree of multiprogramming (the number of processes in mem-
ory). If the degree of multiprogramming is stable, then the average rate of
process creation must be equal to the average departure rate of processes
leaving the system. Thus, the long-term scheduler may need to be invoked
only when a process |eaves the system. Because of the longer interval between
executions, the long-term scheduler can afford to take more time to decide
which process should be selected for execution. o

It is important that the long-term scheduler make a careful selection. In
general, most processes can be described as either 170 bound or CRU bound. An
1/0-bound process is one that spends more of its time doing 1/0 than it spends
doing computations. A CPU-bound process, in contrast, generates /0 requests
infrequently, using more of its time doing computations. It isimportant that the
long-term scheduler select a good process mix of 1/0O-bound and CPU-bound
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Figure 3.8 Addition of medium-term scheduling to the queueing diagram.

processes. If al processes are 1/0 bound, the ready queue will almost always
be empty, and the short-term scheduler will have little to do. If all processes
are CPU bound, the 1/0 waiting queue will almost always be empty, devices
will go unused, and again the system will be unbalanced. The system with the
best performance will thus have a combination of CPU-bound and 1/0-bound
processes.

On some systems, the long-term scheduler may be absent or minimal.
For example, time-sharing systems such as UNIX and Microsoft Windows
systems often have no long-term scheduler but simply put every new process
in memory for the short-term scheduler. The stability of these systems depends
either on a physical limitation (such as the number of available terminals) or
on the self-adjusting nature of human users. If the performance declines to
unacceptable levels on a multiuser system, some users will simply quit.

Some operating systems, such as time-sharing systems, may introduce an
additional, intermediate level of scheduling. This medium-term scheduler is
diagrammed in Figure 3.8. The key idea behind a medium-term scheduler is
that sometimes it can be advantageous to remove processes from memory
(and from active contention for the CRU) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into memory, and its
execution can be continued where it left off. This scheme is called swapping.
The process is swapped out, and is later swapped in, by the medium-term
scheduler. Swapping may be necessary to improve the process mix or because
a change in memory requirements has overcommitted available memory,
requiring memory to be freed up. Swapping is discussed in Chapter 8.

3.2.3 Context Switch

As mentioned in 1.2.1, interrupts cause the operating system to change a CRU
from its current task and to run a kernel routine. Such operations happen
frequently on general -purpose systems. When an interrupt occurs, the system
needs to save the current context of the process currently running on the
CPU so that it can restore that context when its processing is done, essentially’
suspending the process and then resuming it. The context is represented in
the PCB of the process; it includes the value of the CFU registers, the process
state (see Figure 3.2), and memory-management information. Generically, we
perform a state save of the current state of the CPU, beit in kernel or user mode,
and then a state restore to resume operations.
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Switching the CPU to another process requires performing a state save
of the current process and a state restore of a different process. This task is
known as a context switch. When a context switch occurs, the kernel saves the
context of the old process in its RCB and loads the saved context of the new
process scheduled to run. Context-switch time is pure overhead, because the
system does no useful work while switching. Its speed varies from machine to
machine, depending on the memory speed, the number of registers that must
be copied, and the existence of special instructions (such as a single instruction
to load or store al registers). Typical speeds are a few milliseconds.

Context-switch times are highly dependent on hardware support. For
instance, some processors (such as the Sun UltraSPARC) provide multiple sets
of registers. A context switch here simply requires changing the pointer to the
current register set. Of course, if there are more active processes than there are
register sets, the system resorts to copying register data to and from memory,
as before. Also, the more complex the operating system, the more work must
be done during a context switch. As we will see in Chapter 8, advanced
memory-management techniques may require extra data to be switched with
each context. For instance, the address space of the current process must be
preserved as the space of the next task is prepared for use. How the address
space is preserved, and what amount of work is needed to preserve it, depend
on the memory-management method of the operating system.

Operations on Processes

The processes in most systems can execute concurrently, and they may
be created and deleted dynamically. Thus, these systems must provide a
mechanism for process creation and termination. In this section, we explore
the mechanisms involved in creating processes and illustrate process creation
on UNIX and Windows systems.

3.3.1 Process Creation

A process may create several new processes, via a create-process system call,
during the course of execution. The creating process is called a parent process,
and the new processes are called the children of that process. Each of these
new processes may in turn create other processes, forming a tree of processes.
Most operating systems (including UNIX and the Windows family of
operating systems) identify processes according to a unique process identifier
(or pid), which is typically an integer number. Figure 3.9 illustrates a typical
process tree for the Solaris operating system, showing the name of each process
and its pid. In Solaris, the process at the top of the tree is the sched process,
with pid of 0. The sched process creates several children processes—including
pageout and f sf lush. These processes are responsible for managing memory
and file systems. The sched process also createsthe i nit process, which serves
as the root parent process for all user processes. In Figure 3.9, we see two
children of init— inetd and dtlogin. inetd is responsible for networking
services such as telnet and ftp; dtlogin is the process representing a user
login screen. When a user logs in, dtlogin creates an X-windows Session
(Xsession), which in turns creates the sdt _shel process. Below sdt_shel, a
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user's command-line shell —the C-shell or csh—is created. Itisthis command-
line interface where the user then invokes various child processes, such as the
1lsand cat commands. We also see a csh process with pid of 7778 representing
a user who has logged onto the system using tel net. This user has started the
Netscape browser (pid of 7785) and the emacs editor (pid of 8105).

On UNIX, alisting of processes can be obtained using the ps command. For
example, entering the command ps -el will list complete information for al
processes currently active in the system. It is easy to construct a process tree
similar to what is shown in Figure 39 by recursively tracing parent processes
al the way to the init process.

In general, a process will need certain resources (CPU time, memory, files,
1/0 devices) to accomplish its task. When a process creates a subprocess, that
subprocess may be able to obtain its resources directly from the operatiiig
system, or it may be constrained to a subset of the resources of the parent
process. The parent may have to partition its resources among its children,
or it may be able to share some resources (such as memory or files) among
several of its children. Restricting a child process to a subset of the parent's
resources prevents any process from overloading the system by creating too
many subprocesses.

In addition to the various physical and logical resources that a process
obtains when it is created, initialization data (input) may be passed along by
the parent process to the child process. For example, consider a process whose
function is to display the contents of a file—say, img.jpg—on the screen of a

fsflush
pid =3

Netscape
pid = 7785

Figure 3.9 A tree of processes on a typical Solaris system.
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terminal. When it is created, it will get, as an input from its parent precess,
the name of the file img.jpg, and it will use that file name, open the file, and
write the contents out. It may also get the name of the output device. Some
operating systems pass resources to child processes. On such a system, the
new process may get two open files, img.jpg and the terminal device, and may
simply transfer the datum between the two.

When a process creates a new process, two possibilities exist in terms of
execution:

1. The parent continues to execute concurrently with its children.
2. The parent waits until some or all of its children have terminated.

There are also two possibilities in terms of the address space of the new process:

1. The child process is a duplicate of the parent process (it has the same
program and data as the parent).
2. The child process has a new program loaded into it.

To illustrate these differences, let's first consider the UNIX operating system.
In UNIX, as we've seen, each process is identified by its process identifier,

#incl ude <«sys/types.h>
#i ncl ude <stdio.h>
#i ncl ude <uni std. h>

int main()

pid.t pid;
/* fork a child process */
pid = fork();
if (pid < 0) {/* error occurred */
fprintf (stderr, "Fork Failed");
exit (-1 ;
}
else if (pid == 0} {/* child process =/
execlp("/bin/ls","ls",NULL) ;
else {/* parent process */
[* parent will wait for the child to conplete */
wait (NULL) ;
printf ("Child Conpl ete");
} exit (0);
}

Figure 3.10 C program forking a separate process.
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which is a unique integer. A new process is created by the fork() system
cal. The new process consists of a copy of the address space of the original
process. This mechanism allows the parent process to communicate easily with
its child process. Both processes (the parent and the child) continue execution
at the instruction after the fork(), with one difference: The return code for
the fork() is zero for the new (child) process, whereas the (nonzero) process
identifier of the child is returned to the parent.

Typicaly, the exec() system call is used after a forkO system call by
one of the two processes to replace the process's memory space with a new
program. The exec () system call loads a binary file into memory (destroying
the memory image of the program containing the exec() system call) and
starts its execution. In this manner, the two processes are able to communicate
and then go their separate ways. The parent can then create more children; or,
if it has nothing else to do while the child runs, it can issue await () system
cal to move itsdf off the ready queue until the termination of the child.

The C program shown in Figure 3.10 illustrates the UNIX system calls
previously described. We now have two different processes running a copy
of the same program. The value of pid for the child process is zero; that for
the parent is an integer value greater than zero. The child process overlays
its address space with the UNIX command /bin/1s (used to get a directory
listing) using the execlpO system call (execlpO is aversion of the execO
system call). The parent waits for the child process to completewith thewait ()
system call. When the child process completes (by either implicitly or explicitly
invoking exit ()) the parent process resumes from the call to wait (), where it
completes using the exit () system call. Thisis also illustrated in Figure 3.11.

As an alternative example, we next consider process creation in Windows.
Processes are created in the Win32 AP using the CreateProcess () function,
whichissimilar to f ork () inthat a parent creates anew child process. However,
whereas f ork () has the child processinheriting the address space of its parent,
CreateProcess () requiresloading a specified program into the address space
of the child process at process creation. Furthermore, whereas f ork () is passed
no parameters, CreateProcess 0 expects no fewer than ten parameters.

The C program shown in Figure 3.12 illustrates the CreateProcess()
function, which creates a child process that loads the application mspaint . exe.
We opt for many of the default values of the ten parameters passed to
CreateProcess(). Readers interested in pursuing the details on process
creation and management in the Win32 AP are encouraged to consult the
bibliographical notes at the end of this chapter.

rgsumes

Figure 3.11 Process creation.
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#include <stdi o. h> 3
#include <windows.h>

int main(VOID)

{

STARTUPI NFO si ;
PROCESS_INFORMATION pi ;

/1 allocate menory
ZeroMemory (&si, sizeof(sSi)) ;
si.cb = sizeof (si) ;
ZeroMemory (&pi, sizeof (pi));

/1 create child process

if (!CreateProcess (NULL, // use command |ine
"CoA\\WINDOWS\\system32\\mspaint.exe", // command |ine
NULL, // don't inherit process handle
NULL, // don't inherit thread handle
FALSE, // disable handle inheritance
0, //no creation flags

NULL, // wuse parent's environment bl ock
NULL, // use parent's existing directory
&si,
Epi})

{
fprintf (stderr, "Create Process Fail ed");
return -1;

}

[/l parent will wait for the child to conplete
WaitForSingleObject (pi.hProcess, | NFI NI TE);
printf ("Child Conpl ete");

/1 close handl es
CloseHandle (pi.hProcess) ;
CloseHandle (pi.hThread) ;

Figure 3.12 Creating a separate process using the Win32 API.

Two parameters passed to CreateProcess() are instances of the START-
URINFO and PROCESSINFORMATION structures. STARTURNFO specifies many
properties of the new process, such as window size and appearance and han-
dles to standard input and output files. The PROCESSINFORMATION structure
contains a handle and the identifiers to the newly created process and its thread.

We invoke the ZeroMemoryO function to allocate memory for each of these N

structures before proceeding with CreateProcess ().

The first two parameters passed to CreateProcess () are the application
name and command line parameters. If the application name is NULL (which
in this case it is), the command line parameter specifies the application to
load. In this instance we are loading the Microsoft Windows nispaint.exe
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application. Beyond these two initial parameters, we use the default parameters
for inheriting process and thread handles aswell as specifying no creation flags.
We also use the parent's existing environment block and starting directory.
Last, we provide two pointersto the STARTURNFO and PROCESSINFORMATION
structures created at the beginning of the program. In Figure 3.10, the parent
process waits for the child to complete by invoking the wait () system call.
Theequivalent of thisin Win32 isWaitForSinglelbject (), whichispassed a
handle of the child process—pi . hProcess— that it iswaiting for to compl ete.
Once the child process exits, control returnsfrom the WaitForSingleObj ect ()
function in the parent process.

3.3.2 Process Termination

A process terminates when it finishes executing its fina statement and asks the
operating system to deleteit by using the exit () system call. At that point, the
process may return a status value (typically an integer) toitsparent process (via
thewait() systemcall). All the resources of the process—including physical and
virtual memory, open files, and 1/0 buffers—are deallocated by the operating
system.

Termination can occur in other circumstances as well. A process can cause
the termination of another process via an appropriate system call (for example,
TerminateProcess () in Win32). Usually, such a system call can be invoked
only by the parent of the process that is to be terminated. Otherwise, users
could arbitrarily kill each other's jobs. Note that a parent needs to know the
identities of its children. Thus, when one process creates a new process, the
identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children for a variety of
reasons, such as these:

» The child has exceeded its usage of some of the resources that it has been
allocated. (To determine whether this has occurred, the parent must have
a mechanism to inspect the state of its children.)

» The task assigned to the child is no longer required.

* The parent is exiting, and the operating system does not allow a child to
continue if its parent terminates.

Some systems, including VMS do not allow a child to exist if its parent
has terminated. In such systems, if a process terminates (either normally or
abnormally), then al its children must also be terminated. This phenomenon,
referred to as cascading termination, is normally initiated by the operating
system.

To illustrate process execution and termination, consider that, in UNIX, we
can terminate a process by using the exit () system call; its parent process
may wait for the termination of a child process by using the wait () system
cal. Thewait () system call returns the process identifier of a terminated child
so that the parent can tell which of its possibly many children has terminated.
If the parent terminates, however, dl its children have assigned as their new
parent the init process. Thus, the children still have a parent to collect their
status and execution statistics.
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Interprocess Communication ’

Processes executing concurrently in the operating system may be either
independent processes or cooperating processes. A process is independent
if it cannot affect or be affected by the other processes executing in the system.
Any process that does not share data with any other process is independent. A
process is cooperating if it can affect or be affected by the other processes
executing in the system. Clearly, any process that shares data with other
processes is a cooperating process.

There are several reasons for providing an environment that allows process
cooperation:

* Information sharing. Since several users may be interested in the same
piece of information (for instance, a shared file), we must provide an
environment to allow concurrent access to such information.

» Computation speedup. If we want a particular task to run faster, we must
break it into subtasks, each of which will be executing in parallel with the
others. Notice that such a speedup can be achieved only if the computer
has multiple processing elements (such as CPUs or 1/0 channels).

* Modularity. We may want to construct the system in a modular fashion,
dividing the system functions into separate processes or threads, as we
discussed in Chapter 2.

» Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and compiling in
parallel.

Cooperating processes require an inter process communication (IPC) mech-
anism that will allow them to exchange data and information. There are two
fundamental models of interprocess communication: (1) shared memory and
(2) message passing. In the shared-memory model, a region of memory that
is shared by cooperating processes is established. Processes can then exchange
information by reading and writing data to the shared region. In the message-
passing model, communication takes place by means of messages exchanged
between the cooperating processes. The two communications models are
contrasted in Figure 3.13.

Both of the models just discussed are common in operating systems, and
many systems implement both. Message passing is useful for exchanging
smaller amounts of data, because no conflicts need be avoided. Message
passing is also easier to implement than is shared memory for intercomputer
communication. Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within a computer.
Shared memory is faster than message passing, as message-passing systems
are typically implemented using system calls and thus require the more time-
consuming task of kernel intervention. In contrast, in shared-memory systems,
system calls are required only to establish shared-memory regions. Once shared
memory is established, all accesses are treated as routine memory accesses, and
no assistance from the kernel is required. In the remainder of this section, we
explore each of these IPC modelsin more detail.
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Figure 3.13 Communications models. (8) Message passing. (b) Shared memory.

3.4.1 Shared-Memory Systems

Interprocess communication using shared memory requires communicating
processes to establish a region of shared memory. Typically, a shared-memory
region resides in the address space of the process creating the shared-memory
segment. Other processes that wish to communicate using this shared-memory
segment must attach it to their address space. Recall that, normally, the
operating system tries to prevent one process from accessing another process's
memory. Shared memory requires that two or more processes agree to remove
this restriction. They can then exchange information by reading and writing
datain the shared areas. Theform of the data and the location are determined by
these processes and are not under the operating system's control. The processes
are also responsible for ensuring that they are not writing to the same location
simultaneously.

To illustrate the concept of cooperating processes, let's consider the
producer-consumer problem, which is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process. For example, a compiler may produce assembly code,
which is consumed by an assembler. The assembler, in turn, may produce
object modules, which are consumed by the loader. The producer-consumer
problem also provides a useful metaphor for the client-server paradigm. We
generaly think of a server as a producer and a client as a consumer. For
example, a web server produces (that is, provides) HTML files and images,
which are consumed (that is, read) by the client web browser requesting the
resource.

One solution to the producer-consumer problem uses shared memory. To
allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by
the consumer. This buffer will reside in a region of memory that is shared by
the producer and consumer processes. A producer can produce one item while
the consumer is consuming another item. The producer and consumer must
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be synchronized, so that the consumer does not try to consume an item that
has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical
limit on the size of the buffer. The consumer may have to wait for new items,
but the producer can always produce new items. The bounded buffer assumes
a fixed buffer size. In this case, the consumer must wait if the buffer is empty,
and the producer must wait if the buffer is full.

Let's look more closaly at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a region of
memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10
typedef struct {
}item;

item buffer [RBUFFER_SIZE] ;
int in = O,—
int out = 0O;

The shared buffer is implemented as a circular array with two logical
pointers: in and cut. The variable in points to the next free position in the
buffer; out points to the first full position in the buffer. The buffer is empty
when in == out; the buffer is full when ((in + 1) % BUFFER SIZE) == oult.

The code for the producer and consumer processesis shown in Figures 3.14
and 3.15, respectively. The producer process has alocal variable nextProduced
in which the new item to be produced is stored. The consumer process has a
local variable nextConsumed in which the item to be consumed is stored.

This scheme allows at most BUFFER SIZE —1 items in the buffer at the same
time. Weleaveit as an exercise for you to provide a solution where BUFFER SIZE
items can be in the buffer at the same time. In Section 3.5.1, we illustrate the
POSIX AF for shared memory.

One issue thisillustration does not address concerns the situation in which
both the producer process and the consumer process attempt to access the
shared buffer concurrently. In Chapter 6, we discuss how synchronization
among cooperating processes can be implemented effectively in a shared-
memory environment.

i tem nextProduced;

while (true) ({
/* produce an item in nextProduced */
while (({in+ 1) %BUFFER SIZE) == out)
/* do nothing */
buffer{in] = next Produced,
in= (in + 1) % BUFFER SIZE;

Figure 3.14 The producer process.
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item nextConsumed; 5

while (true) ({
while (in == out)
/1 do not hi ng

nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;
/* consunme the itemin nextConsuned */

Figure 3.15 The consumer process.

3.4.2 Message-Passing Systems

In Section 3.4.1, we showed how cooperating processes can communicate in a
shared-memory environment. The scheme requires that these processes share a
region of memory and that the code for accessing and manipulating the shared
memory be written explicitly by the application programmer. Another way to
achieve the same effect is for the operating system to provide the means for
cooperating processes to communicate with each other via a message-passing
fecility.

M essage passing provides a mechanism to allow processes to communicate
and to synchronize their actions without sharing the same address space and
is particularly useful in a distributed environment, where the communicating
processes may reside on different computers connected by a network. For
example, a chat program used on the World Wide Web could be designed so
that chat participants communicate with one another by exchanging messages.

A message-passing facility provides at |east two operations: send(message)
and receive(message). Messages sent by a process can be of either fixed
or variable size. If only fixed-sized messages can be sent, the system-level
implementation is straightforward. This restriction, however, makes the task
of programming more difficult. Conversely, variable-sized messages require
a more complex system-level implementation, but the programming task
becomes simpler. Thisis acommon kind of tradeoff seen throughout operating
system design.

If processes P and Q want to communicate, they must send messages to and
receive messages from each other; a communication link must exist between
them. Thislink can beimplemented in a variety of ways. We are concerned here
not with the link's physical implementation (such as shared memory, hardware
bus, or network, which are covered in Chapter 16) but rather with its logica
implementation. Here are several methods for logically implementing a link
and the send () /receive() operations:

» Direct or indirect communication
* Synchronous or asynchronous communication
* Automatic or explicit buffering

We look at issues related to each of these features next.
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3421 Naming ?

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate
must explicitly name the recipient or sender of the communication. In this
scheme, the send () and receive() primitives are defined as:

» send(P, message)—Send amessage to process P.
* receive(, message) —Receive amessage from process Q.

A communication link in this scheme has the following properties:

* A link is established automatically between every pair of processes that
want to communicate. The processes need to know only each other's
identity to communicate.

» Alink is associated with exactly two processes.
» Between each pair of processes, there exists exactly one link.

This scheme exhibits symmetry in addressing; that is, both the sender
process and the receiver process must name the other to communicate. A
variant of this scheme employs asymmetry in addressing. Here, only the sender
names the recipient; the recipient is not required to name the sender. In this
scheme, the send() and receive () primitives are defined as follows:

» send(P, message)—Send a message to process P.

* receive(id, message) —Receive amessage from any process; the vari-
able id is set to the name of the process with which communication has
taken place.

The disadvantage in both of these schemes (symmetric and asymmetric)
is the limited modularity of the resulting process definitions. Changing the
identifier of a process may necessitate examining al other process definitions.
All references to the old identifier must be found, so that they can be modified
to the new identifier. In general, any such hard-coding techniques, where
identifiers mustbe explicitly stated, areless desirable than techniques involving
indirection, as described next.

With indirect communication, the messages are sent to and received from
mailboxes, or ports. A mailbox can be viewed abstractly as an object into which
messages can be placed by processes and fromwhich messages can be removed.
Each mailbox has a unique identification. For example, POSIX message queues
use an integer value to identify a mailbox. In this scheme, a process can
communicate with some other process via a number of different mailboxes.
Two processes can communicate only if the processes have a shared mailbox, -
however. The sendC) and receive() primitives are defined as follows:

» send(A, message) —Send amessage to mailbox A.
* receive(A, message)—Receive a message from mailbox A.

In this scheme, a communication link has the following properties:
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* Alink is established between a pair of processes only if both members of
the pair have a shared mailbox.

* A link may be associated with more than two processes.

» Between each pair of communicating processes, there may be a number of
different links, with each link corresponding to one mailbox.

Now suppose that processes P;, P,, and P; al share mailbox A Process
P; sends a message to A, while both P; and P; execute areceive() from A
Which process will receive the message sent by P;? The answer depends on
which of the following methods we choose:

» Allow alink to be associated with two processes at most.
» Allow at most one process at a time to execute areceive () operation.

* Allow the system to select arbitrarily which process will receive the
message (that is, either P, or P;, but not both, will receive the message).
The system also may define an algorithm for selecting which process
will receive the message (that is, round robin where processes take turns
receiving messages). The system may identify the receiver to the sender.

A mailbox may be owned either by a process or by the operating system.
If the mailbox is owned by a process (that is, the mailbox is part of the address
space of the process), then we distinguish between the owner (who can only
receive messages through this mailbox) and the user (who can only send
messages to the mailbox). Since each mailbox has a unique owner, there can be
no confusion about who should receive a message sent to this mailbox. When a
process that owns a mailbox terminates, the mailbox disappears. Any process
that subsequently sends a message to this mailbox must be notified that the
mailbox no longer exists.

In contrast, a mailbox that is owned by the operating system has an
existence of its own. It is independent and is not attached to any particular
process. The operating system then must provide a mechanism that allows a
process to do the following:

* Create a new mailbox.

* Send and receive messages through the mailbox.

» Delete a mailbox.
The process that creates a new mailbox is that mailbox's owner by default.
Initially, the owner is the only process that can receive messages through this
mailbox. However, the ownership and receiving privilege may be passed to
other processes through appropriate system calls. Of course, this provision:
could result in multiple receivers for each mailbox.
3422 Synchronization

Communication between processes takes place through cals to send() and
receive() primitives. There are different design options for implementing
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each primitive. Message passing may be either blocking or nonblocKing—
also known as synchronous and asynchronous.

* Blocking send. The sending process is blocked until the message is
received by the receiving process or by the mailbox.

* Nonblocking send. The sending process sends the message and resumes
operation.

» Blocking receive. The receiver blocks until a message is available.

* Nonblocking receive. The receiver retrieves either a valid message or a
null.

Different combinations of send() and receive () are possible. When both
send() and receive() are blocking, we have a rendezvous between the
sender and the receiver. The solution to the producer-consumer problem
becomes trivial when we use blocking send() and receive() statements.
The producer merely invokes the blocking send () call and waits until the
message is delivered to either the receiver or the mailbox. Likewise, when the
consumer invokes receive(), it blocks until a message is available.

Note that the concepts of synchronous and asynchronous occur frequently
in operating-system 1/0 algorithms, as you will see throughout this text.

34.23 Buffering

Whether communication is direct or indirect, messages exchanged by commu-
nicating processes reside in a temporary queue. Basicaly, such queues can be
implemented in three ways:

* Zero capacity. The queue has a maximum length of zero; thus, the link
cannot have any messages waiting in it. In this case, the sender must block
until the recipient receives the message.

* Bounded capacity. The queue has finite length n; thus, at most n messages
can reside in it. If the queue is not full when a new message is sent, the
message is placed in the queue (either the message is copied or a pointer
to the message is kept), and the sender can continue execution without
waiting. The links capacity is finite , however. If the link is full, the sender
must block until space is available in the queue.

* Unbounded capacity. The queues length is potentially infinite; thus, any
number of messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no
buffering; the other cases are referred to as systems with automatic buffering.

Examples of IPC Systems

In this section, we explore three different irC systems. We first cover the
pOSIX APT for shared memory and then discuss message passing in the Mach
operating system. We conclude with Windows XP, which interestingly uses
shared memory as a mechanism for providing certain types of message passing.
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3.5.1 An Example: POSIX Shared Memory .

Several IPRC mechanisms are available for FOSX systems, including shared
memory and message passing. Here, we explore the FOSX AR for shared
memory.

A process must first create a shared memory segment using the shmget ()
system call (shmget () is derived from SHared Memory GET). The following
example illustrates the use of shmget ():

segment.id = shmget (IPC_PRIVATE, Size, SRUR | SWUR) ;

This first parameter specifies the key (or identifier) of the shared-memory
segment. If thisis set to IPC_PRIVATE, anew shared-memory segment is created.
The second parameter specifies the size (in bytes) of the shared memory
segment. Finadly, the third parameter identifies the mode, which indicates
how the shared-memory segment is to be used —that is, for reading, writing,
or both. By setting the mode to SRUSR | SWVUR we are indicating that the
owner may read or write to the shared memory segment. A successful cdl to
shmget () returns an integer identifier for the shared-memory segment. Other
processes that want to use this region of shared memory must specify this
identifier.

Processes that wish to access a shared-memory segment must attach it to
their address space using the shmat () (SHared Memory ATtach) system call.
The call to shmat () expects three parameters as well. The firg is the integer
identifier of the shared-memory segment being attached, and the second is
a pointer location in memory indicating where the shared memory will be
attached. If we pass a value of NULL, the operating system selects the location
on the user'sbehaf. The third parameter identifies a flag that all ows the shared-
memory region to be attached in read-only or read-write mode; by passing a
parameter of 0, we allow both reads and writes to the shared region.

The third parameter identifies a mode flag. If set, the mode flag allows the
shared-memory region to be attached in read-only mode; if set to 0, the flag
allows both reads and writes to the shared region. We attach a region of shared
memory using shmat () as follows:

shared memory = (char *) shmat(id, NULL, 0);

If successful, shmat () returns a pointer to the beginning location in memory
where the shared-memory region has been attached.

Once the region of shared memory is attached to a process's address space,
the process can access the shared memory as a routine memory access using
the pointer returned from shmat (). In this example, shmat () returns a pointer
to a character string. Thus, we could write to the shared-memory region as
follows:

sprintf (shared memory, "Writing to shared memory");

Other processes sharing this segment would see the updates to the shared-
memory segment.

Typicaly, a process using an existing shared-memory segment first attaches
the shared-memory region to its address space and then accesses (and possibly
updates) the region of shared memory. When a process no longer requires
access to the shared-memory segment, it detaches the segment from its address
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#include <stdio.h> >
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the identifier for the shared menory segment */

int segment id;=

/* a pointer to the shared menory segment */

char* shared_menory;

/* the size (in bytes) of the shared nmenory segment */
const int size = 4096;

/* allocate a shared menory segnent */
segment_id = shmget (IPC_PRIVATE, Size, S_.IRUSR | S._IWUSR);

/* attach the shared memory segnent */
shared.memory = (char *) shmat (segment._id, NULL, O0) ;

/* wite a message to the shared nmenory segnent */
sprintf (shared-nemory, "H there!");

/* now print out the string from shared nmenory */
printf ("*9%\n", shared memory),*

/* now detach the shared menmory segment */
gshmdt (shar ecLmenory) ;

/* now renmove the shared nenory segment */
shmetl (segment_id, |PC_RM D, NULL);

return o;

Figure 3.16 C program illustrating POSIX shared-memory API.

space. To detach a region of shared memory, the process can pass the pointer
of the shared-memory region to the shmdt () system call, as follows:

shmdt (shared_memory) ;

Finally, a shared-memory segment can be removed from the system with the
shmctl () system call, which is passed the identifier of the shared segment
along with the flag IPC_ RMID.

The program shown in Figure 3.16 illustrates the ROSX shared-memory API- -
discussed above. This program creates a 4,096-byte shared-memory segment.
Once the region of shared memory is attached, the process writes the message
Hi There! to shared memory. After outputting the contents of the updated
memory, it detaches and removes the shared-memory region. We provide
further exercises using the POsIX shared memory AR in the programming
exercises at the end of this chapter.
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3.5.2 An Example: Mach 5

As an example of a message-based operating system, we next consider
the Mach operating system, developed at Carnegie Mellon University. We
introduced Mach in Chapter 2 as part of the Mac OS X operating system. The
Mach kernel supports the creation and destruction of multiple tasks, which are
similar to processes but have multiple threads of control. Most communication
in Mach—including most of the system calls and al intertask information—
is carried out by messages. Messages are sent to and received from mailboxes,
called portsin Mach.

Even system calls are made by messages. When atask is created, two special
mailboxes—the Kernel mailbox and the Notify mailbox—are also created. The
Kernel mailbox is used by the kernel to communicate with the task. The kernel
sends notification of event occurrences to the Notify port. Only three system
cdls are needed for message transfer. The msg_send () call sends a message
to a mailbox. A message is received via msg_receive (). Remote procedure
cals (RPCs) are executed viamsg rpc (), which sends a message and waits for
exactly one return message from the sender. In this way, the RPC models a
typical subroutine procedure call but can work between systems—hence the
termremote.

The port_allocate() system cal creates a new mailbox and alocates
space for its queue of messages. The maximum size of the message queue
defaults to eight messages. The task that creates the mailbox is that mailbox's
owner. The owner is also allowed to receive from the mailbox. Only one task
at a time can either own or receive from a mailbox, but these rights can be sent
to other tasks if desired.

The mailbox has an initially empty queue of messages. As messages are
sent to the mailbox, the messages are copied into the mailbox. All messages
have the same priority. Mach guarantees that multiple messages from the same
sender are queued in first-in, first-out (HFO) order but does not guarantee an
absolute ordering. For instance, messages from two senders may be queued in
any order.

The messages themselves consist of a fixed-length header followed by a
variable-length data portion. The header indicates the length of the message
and includes two mailbox names. One mailbox name is the mailbox to which
the message is being sent. Commonly, the sending thread expects a reply; so
the mailbox name of the sender is passed on to the receiving task, which can
use it as a "return address."”

The variable part of a message is a list of typed data items. Each entry
in the list has a type, size, and value. The type of the objects specified in the
message is important, since objects defined by the operating system—such as
ownership or receive access rights, task states, and memory segments—may
be sent in messages.

The send and receive operations themsel ves areflexible. For instance, when
a message is sent to a mailbox, the mailbox may be full. If the mailbox is not
full, the message is copied to the mailbox, and the sending thread continues. If
the mailbox is full, the sending thread has four options:

1. Wait indefinitely until there is room in the mailbox.
2. Wait at most n milliseconds.
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3. Do not wait at al but rather return immediately. 4

4. Temporarily cache a message. One message can be given to the operating
system to keep, even though the mailbox to which it isbeing sent is full.
When the message can be put in the mailbox, a message is sent back to
the sender; only one such message to a full mailbox can be pending at
any time for a given sending thread.

The fina option is meant for server tasks, such as a line-printer driver. After
finishing a request, such tasks may need to send a one-time reply to the task
that had requested service; but they must also continue with other service
requests, even if the reply mailbox for a client is full.

The receive operation must specify the mailbox or mailbox set fromwhich a
message s to bereceived- A mailbox set is a collection of mailboxes, as declared
by the task, which can be grouped together and treated as one mailbox for the
purposes of the task. Threads in a task can receive only from a mailbox or
mailbox set for which the task has receive access. A port_status() system
call returns the number of messages in a given mailbox. The receive operation
attempts to receive from (1) any mailbox in a mailbox set or (2) a specific
(named) mailbox. If no message is waiting to be received, the receiving thread
can either wait at most n milliseconds or not wait at all.

The Mach system was especially designed for distributed systems, which
we discuss in Chapters 16 through 18, but Mach is aso suitable for single-
processor systems, as evidenced by its inclusion in the Mac OS X system. The
major problem with message systems has generally been poor performance
caused by double copying of messages, the message is copied first from
the sender to the mailbox and then from the mailbox to the receiver. The
Mach message system attempts to avoid double-copy operations by using
virtual-memory-management techniques (Chapter 9). Essentially, Mach maps
the address space containing the sender's message into the receiver's address
space. The message itsdlf is never actually copied. This message-management
technique provides a large performance boost but works for only intrasystem
messages. The Mach operating system is discussed in an extra chapter posted
on our website.

3.5.3 An Example: Windows XP

The Windows XP operating system is an example of modern design that
employs modularity to increase functionality and decrease the time needed
to implement new features. Windows XP provides support for multiple
operating environments, or subsystems, with which application programs
communicate via a message-passing mechanism. The application programs
can be considered clients of the Windows XP subsystem server.

The message-passing facility in Windows XP is called the local procedure-
call (LPC) facility. The LRC in Windows XP communicates between two
processes on the same machine. It issimilar to the standard RRC mechanism that
iswidely used, but it is optimized for and specific to Windows XP. Like Mach,
Windows XP uses a port object to establish and maintain a connection between
two processes. Every client that calls a subsystem needs a communication
channel, which is provided by a port object and is never inherited. Windows
XP uses two types of ports: connection ports and communication ports. They
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are really the same but are given different names according to how they are
used. Connection ports are named objects and are visible to al processes; they
give applications a way to set up communication channels (Chapter 22). The
communication works as follows:

» The client opens a handle to the subsystem's connection port object.
» The client sends a connection request.

» The server creates two private communication portsand returnsthe handle
to one of them to the client.

» The client and server use the corresponding port handle to send messages
or callbacks and to listen for replies.

Windows X P usestwo types of message-passing techniques over aport that
the client specifies when it establishes the channel. The simplest, which is used
for small messages, uses the port's message queue as intermediate storage and
copies the message from one process to the other. Under this method, messages
of up to 256 bytes can be sent.

If a client needs to send a larger message, it passes the message through
a section object, which sets up a region of shared memory. The client has to
decide when it sets up the channel whether or not it will need to send a large
message. If the client determines that it does want to send large messages, it
asks for a section object to be created. Similarly, if the server decides that replies
will be large, it creates a section object. So that the section object can be used,
a small message is sent that contains a pointer and size information about the
section object. This method is more complicated than the first method, but it
avoids data copying. In both cases, a callback mechanism can be used when
either the client or the server cannot respond immediately to a request. The
callback mechanism allows them to perform asynchronous message handling.
The structure of loca procedure calls in Windows XP is shown in Figure 3.17.

It is important to note that the LRC facility in Windows XP is not part of
the Win32 AP and hence is not visible to the application programmer. Rather,

Client Server
Connection — R
request | Connection Handle

Port

Handle Client

Communication Port
Server Handle

Communication Port

Shared
- #| Section Object
(< = 256 bytes)

»

J—

Figure 3.17 Local procedure calls in Windows XP.
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applications using the Win32 AR invoke standard remote procedure;calls.
When the RPC is being invoked on a process on the same system, the RFRC is
indirectly handled through alocal procedure cal. LPCs are also used in a few
other functions that are part of the Win32 AR.

Communication in Client-Server Systems

In Section 3.4, we described how processes can communicate using shared
memory and message passing. These techniques can be used for communica-
tion in client-server systems (1.12.2) as well. In this section, we explore three
other strategies for communication in client-server systems: sockets, remote
procedure calls (RPCs), and Java's remote method invocation (RM1).

3.6.1 Sockets

A socket is defined as an endpoint for communication. A pair of processes
communicating over anetwork employ apair of sockets—one for each process.
A socket is identified by an IP address concatenated with a port number. In
general, sockets use a client-server architecture. The server waits for incoming
client requests by listening to a specified port. Once a request is received, the
server accepts a connection from the client socket to complete the connection.
Servers implementing specific services (such as telnet, ftp, and http) listen to
well-known ports (a telnet server listens to port 23, an ftp server listens to
port 21, and aweb, or http, server listens to port 80). All ports below 1024 are
considered well known; we can use them to implement standard services.

When a client process initiates a request for a connection, it is assigned a
port by the host computer. This port is some arbitrary number greater than
1024. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a web server (which is listening on port 80) at
address 161.25.19.8, host X may be assigned port 1625. The connection will
consist of a pair of sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80)
on the web server. This situation is illustrated in Figure 3.18. The packets

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

sc.ckét-- '
(161.25.19.8:80)

Figure 3.18 Communication using sockets.
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traveling between the hosts are delivered to the appropriate process based on
the destination port number.

All connections must be unique. Therefore, if another process also on host
X wished to establish another connection with the sameweb server, it would be
assigned a port number greater than 1024 and not equal to 1625. This ensures
that all connections consist of a unique pair of sockets.

Although most program examples in this text use C, we will illustrate
sockets using Java, as it provides a much easier interface to sockets and has a
rich library for networking utilities. Those interested in socket programming
in C or C++ should consult the bibliographical notes at the end of the chapter.

Java provides three different types of sockets. Connection-oriented (TCP)
sockets are implemented with the Socket class. Connectionless (UDP) sockets
usetheDatagramSocket class. Finally, theMulticastSocketclassisasubclass
of the DatagramSocket class. A multicast socket allows data to be sent to
multiple recipients.

Our example describes a date server that uses connection-oriented TCP
sockets. The operation allows clients to request the current date and time from

import java.net.*;
import java.io.*;

public class DateServer
S o
public static void main(String[] args) {

try {
Server Socket sock = new ServerSocket (6013);

/!l now listen for connections
while (true) ({
Socket client = sock.accept();

PrintWriter pout = new
PrintWriter(client.getQutputStream(), true);

/Il wite the Date to the socket
pout.println(new java.util.Date() .toString());

/!l close the socket and resune
/1 listening for connections
client.closel();

}
}
catch (IOException ioe) {
System.err.println(ioce);
}

}
}

Figure 3.19 Date server.
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the server. The server listens to port 6013, although the port could have any
arbitrary number greater than 1024. When a connection is received, the server
returns the date and time to the client.

The date server isshown in Figure 3.19. The server creates a ServerSocket
that specifies it will listen to port 6013. The server then begins listening to the
port with the accept() method. The server blocks on the accept () method
waiting for a client to request a connection. When a connection request is
received, accept() returns a socket that the server can use to communicate
with the client.

The details of how the server communicates with the socket are as follows.
The server first establishes aPrintWriter object that it will use to communicate
with the client. A PrintWriter object allows the server to write to the socket
using the routine print() and println() methods for output. The server
process sends the date to the client, calling the method printin(). Once it
has written the date to the socket, the server closes the socket to the client and
resumes listening for more requests.

A client communicates with the server by creating a socket and connecting
to the port on which the server is listening. We implement such a client in the
Java program shown in Figure 3.20. The client creates a Socket and requests

import j ava.net.*;
inport java.io.*;

public class Datedient

{

public static void main(String[] args) ({

try {
// make c¢onnection to server socket

Socket sock = new Socket ("127.0.0.1",6013) ;

InputStream in = sock.getInputStream();
BufferedReader bin = new
Buf feredReader (new InputStreamReader (in));

/!l read the date fromthe socket

String |ine;

while ( (line = bin.readline()) != null)
System.out.println(line) ;

// close the socket connection
sock.close();

}

catch (1Cexception ioe) ({
System.err.println(ice) ;

Figure 3.20 Date client.
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a connection with the server at IP address 127.0.0.1 on port 6013. Once the
connection is made, the client can read front the socket using normal stream
10 statements. After it has received the date from the server, the client closes
the socket and exits. The IPaddress 127.0.0.1 isa specia IPaddressknown asthe
loopback. When acomputer refersto IP address 127.0.0.1, it isreferring to itself.
This mechanism allows a client and server on the same host to communicate
using the TCP/IP protocol. The IP address 127.0.0.1 could be replaced with the
IP address of another host running the date server. In addition to an IP address,
an actual host name, such as www.westminstercollege.edu,  canbe used aswell.

Communication using sockets —although common and efficient—is con-
sidered a low-level form of communication between distributed processes.
One reason is that sockets allow only an unstructured stream of bytes to be
exchanged between the communicating threads. It is the responsibility of the
client or server application to impose a structure on the data. In the next two
subsections, we look at two higher-level methods of communication: remote
procedure calls (RPCs) and remote method invocation (RMI).

3.6.2 Remote Procedure Calls

One of the most common forms of remote service is the RRC paradigm, which
we discussed briefly in Section 35.2. The RRC was designed as a way to
abstract the procedure-call mechanism for use between systems with network
connections. It is similar in many respects to the IPC mechanism described in
Section 34, and it is usually built on top of such a system. Here, however,
because we are dealing with an environment in which the processes are
executing on separate systems, we must use a message-based communication
scheme to provide remote service. In contrast to the IPC facility, the messages
exchanged in RRC communication are well structured and are thus no longer
just packets of data. Each message is addressed to an RFC daemon listening to
a port on the remote system, and each contains an identifier of the function
to execute and the parameters to pass to that function. The function is then
executed as requested, and any output is sent back to the requester in a separate
message.

A portissimply anumber included at the start of amessage packet. Whereas
a system normally has one network address, it can have many ports within
that address to differentiate the many network servicesit supports. If a remote
process needs a service, it addresses a message to the proper port. For instance,
if a system wished to allow other systems to be able to list its current users, it
would have a daemon supporting such an RRC attached to a port—say, port
3027. Any remote system could obtain the needed information (that is, the list
of current users) by sending an RRC message to port 3027 on the server; the
data would be received in a reply message.

The semantics of RPCs allow a client to invoke a procedure on a remote
host as it would invoke a procedure locally. The RRC system hides the details

that allow communication to take place by providing a stub on the client side.

Typicaly, a separate stub exists for each separate remote procedure. When the
client invokes a remote procedure, the RRC system calls the appropriate stub,
passing it the parameters provided to the remote procedure. This stub locates
the port on the server and marshals the parameters. Parameter marshalling
involves packaging the parameters into a form that can be transmitted over
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a network. The stub then transmits a message to the server using miessage
passing. A similar stub on the server side receives this message and invokes
the procedure on the server. If necessary, return values are passed back to the
client using the same technique.

One issue that must be dealt with concerns differences in data representa-
tion on the client and server machines. Consider the representation of 32-bit
integers. Some systems (known as big-endian) use the high memory addressto
store the most significant byte, while other systems (known aslittle-endian) store
the least significant byte at the high memory address. To resolve differences
like this, many RRC systems define a machine-independent representation of
data. One such representation is known as external data representation (XDR).
On the client side, parameter marshalling involves converting the machine-
dependent data into XDR before they are sent to the server. On the server
side, the XDR data are unmarshalled and converted to the machine-dependent
representation for the server.

Another important issue involves the semantics of a call. Whereas local
procedure calls fal only under extreme circumstances, RPCs can fail, or be
duplicated and executed more than once, as a result of common network
errors. One way to address this problem is for the operating system to ensure
that messages are acted on exactly once, rather than at most once. Most local
procedure calls have the "exactly once" functionality, but it is more difficult to
implement.

First, consider “at most once". This semantic can be assured by attaching
a timestamp to each message. The server must keep a history of al the
timestamps of messages it has already processed or a history large enough
to ensure that repeated messages are detected. Incoming messages that have
a timestamp already in the history are ignored. The client can then send
a message one or more times and be assured that it only executes once.
(Generation of these timestamps is discussed in Section 18.1.)

For "exactly once," we need to remove the risk that the server never receives
the request. To accomplish this, the server must implement the "at most once"
protocol described above but must also acknowledge to the client that the RFC
call was received and executed. These ACK messages are common throughout
networking. The client must resend each RPC call periodically until it receives
the ACK for that call.

Another important issue concerns the communication between a server
and a client. With standard procedure calls, some form of binding takes place
during link, load, or execution time (Chapter 8) so that a procedure call's name
is replaced by the memory address of the procedure cal. The RRC scheme
requires a similar binding of the client and the server port, but how does aclient
know the port numbers on the server? Neither system has full information
about the other because they do not share memory.

Two approaches are common. First, the binding information may be
predetermined, in the form of fixed port addresses. At compile time, an RRC
cal has a fixed port number associated with it. Once a program is compiled,
the server cannot change the port number of the requested service. Second,
binding can be done dynamically by a rendezvous mechanism. Typicaly, an
operating system provides a rendezvous (also caled a matchmaker) daemon
on a fixed RRC port. A client then sends a message containing the name of
the RRC to the rendezvous daemon requesting the port address of the RRC it
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Figure 3.21 Execution of a remote procedure call (RPC).

needs to execute. The port number is returned, and the RRC calls can be sent
to that port until the process terminates (or the server crashes). This method
reguires the extra overhead of the initial request but is more flexible than the
first approach. Figure 3.21 shows a sample interaction.

The RRC scheme is useful in implementing a distributed file system
(Chapter 17). Such a system can be implemented as a set of RRC daemons
and clients. The messages are addressed to the distributed file system port on a
server on which afile operation is to take place. The message contains the disk
operation to be performed. The disk operation might be read, write, rename,
delete, or status, corresponding to the usual file-related system calls. The
return message contains any data resulting from that call, which is executed by
the DFS daemon on behalf of the client. For instance, a message might contain
a request to transfer a whole file to a client or be limited to a simple block
request. In the latter case, several such requests may be needed if a whole file
is to be transferred.
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3.6.3 Remote Method Invocation

Remote method invocation (RMI) is a Java feature similar to RPCs RMI allows
athread to invoke a method on a remote object. Objects are considered remote
if they reside in a different Java virtual machine (WM). Therefore, the remote
object may be in a different ¥M on the same computer or on a remote host
connected by a network. This situation is illustrated in Figure 3.22.

RMI and RPCs differ in two fundamental ways. First, RPCs support pro-
cedural programming, whereby only remote procedures or functions can be
called. In contrast, RMI is object-based: It supports invocation of methods on
remote objects. Second, the parameters to remote procedures are ordinary data
structuresin RPC; with RMI, it is possibleto pass objects as parameters to remote
methods. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to devel op Java applications that are distributed
across a network.

To make remote methods transparent to both the client and the server,
RMI implements the remote object using stubs and skeletons. A stub is a
proxy for the remote object; it resides with the client. When a client invokes a
remote method, the stub for the remote object is called. This client-side stub
is responsible for creating a parcel consisting of the name of the method to be
invoked on the server and the marshalled parameters for the method. The stub
then sends this parcel to the server, where the skeleton for the remote object
receives it. The skeleton is responsible for unmarshalling the parameters and
invoking the desired method on the server. The skeleton then marshals the
return value (or exception, if any) into a parcel and returns this parcel to the
client. The stub unmarshals the return value and passes it to the client.

Lets look more closdly at how this process works. Assume that a client
wishes to invoke a method on a remote object server with a signature
someMethod(Object, Object) that returns a boolean value. The client
executes the statement

bool ean val = server.someMethod(4, B);

The cal to someMethod () with the parameters A and B invokes the stub for the
remote object. The stub marshals into aparcel the parameters A and B and the
name of the method that is to be invoked on the server, then sends this parcel to
the server. The skeleton on the server unmarshals the parameters and invokes
the method someMethod(). The actual implementation of someMethod ()
resides on the server. Once the method is completed, the skeleton marshals
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Figure 3.22 Remote method invocation.
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Figure 3.23 Marshalling parameters.

the boolean value returned from someMethod () and sends this value back to
the client. The stub unmarshals this return value and passesit to the client. The
process is shown in Figure 3.23.

Fortunately, the level of abstraction that RMI provides makes the stubs and
skeletons transparent, allowing Java devel opers to write programs that invoke
distributed methods just as they would invoke local methods. It is crucial,
however, to understand a few rules about the behavior of parameter passing.

» If the marshalled parameters are local (or nonremote) objects, they are
passed by copy using a technique known as object serialization. However,
if the parameters are also remote objects, they are passed by reference. In
our example, if A isaloca object and B aremote object, A isserialized and
passed by copy, and B is passed by reference. Thisin turn allows the server
to invoke methods on B remotely.

» |f local objects are to be passed as parameters to remote objects, they must
implement the interface j ava.io . Serializable. Many objectsin the core
Java AR implement Serializable, allowing them to be used with RMI.
Object serialization allows the state of an object to be written to a byte
stream.

Summary

A processisaprogramin execution. Asaprocess executes, it changes state. The
state of a process is defined by that process's current activity. Each process may
be in one of the following states: new, ready, running, waiting, or terminated.
Each process is represented in the operating system by its own process-control
block (PCB).

A process, when it is not executing, is placed in some waiting queue. There
are two major classes of queues in an operating system: 1/O reguest queues
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and the ready queue. The ready queue contains al the processes that areteady
to execute and are waiting for the CPU. Each process is represented by a PCB,
and the PCBs can be linked together to form a ready queue. Long-term (job)
scheduling is the selection of processes that will be allowed to contend for
the CPU. Normally, long-term scheduling is heavily influenced by resource-
alocation considerations, especially memory management. Short-term (CPU)
scheduling is the selection of one process from the ready queue.

Operating systems must provide a mechanism for parent processes to
create new child processes. The parent may wait for its children to terminate
before proceeding, or the parent and children may execute concurrently. There
are severa reasons for allowing concurrent execution: information sharing,
computation speedup, modularity, and convenience.

The processes executing in the operating system may be either independent
processes or cooperating processes. Cooperating processes require an interpro-
cess communication mechanism to communicate with each other. Principally,
communication is achieved through two schemes: shared memory and mes-
sage passing. The shared-memory method requires communicating processes
to share some variables. The processes are expected to exchange information
through the use of these shared variables. In a shared-memory system, the
responsibility for providing communication rests with the application pro-
grammers; the operating system needs to provide only the shared memory.
The message-passing method alows the processes to exchange messages.
The responsibility for providing communication may rest with the operating
system itself. These two schemes are not mutually exclusive and can be used
simultaneously within a single operating system.

Communication in client-server systems may use (1) sockets, (2) remote
procedure cals (RPC9), or (3) Java's remote method invocation (RMI). A socket
is defined as an endpoint for communication. A connection between a pair of
applications consists of apair of sockets, one at each end of the communication
channel. RPCs are another form of distributed communication. An RRC occurs
when a process (or thread) calls a procedure on a remote application. RMI is
the Java version of RPCs. RMI allows a thread to invoke a method on a remote
objectjust asit would invoke amethod on alocal object. The primary distinction
between RPCs and RMI is that in RPCs data are passed to aremote procedurein
the form of an ordinary data structure, whereas RMI allows objects to be passed
in remote method calls.

Exercises

31 Describe the differences among short-term, medium-term, and long-
term scheduling.

3.2 Describe the actions taken by a kernel to context-switch between =

processes.

3.3 Consider the RRC mechanism. Describe the undesirable consequences
that could arise from not enforcing either the "at most once" or "exactly
once" semantic. Describe possible uses for a mechanism that has neither
of these guarantees.
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#i nclude <sys/types.h>
#i ncl ude <stdi o. h>
#include <unistd. h>

int value = 5;

int main ()

{

pid_t pid;
pid = fork();

if {(pid== 0) {/* child process */
val ue += 15;

}

else if (pid > 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /* LINE A */
exit(0);

Figure 3.24 C program.

Using the program shown in Figure 3.24, explain what will be output at
Line A.

What are the benefits and the disadvantages of each of the following?
Consider both the system level and the programmer level.

a.  Synchronous and asynchronous communication
b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8. .
Formally, it can be expressed as:

fibo = 0
fibl =1
ﬁbn = fllbnfl + fibnfz

Write a C program using the fork() system cal that that generates the
Fibonacci sequence in the child process. The number of the sequence
will be provided in the command line. For example, if 5 is provided, the
first five numbers in the Fibonacci sequence will be output by the child
process. Because the parent and child processes have their own copies
of the data, it will be necessary for the child to output the sequence.
Have the parent invoke the wait () cal to wait for the child process to
complete before exiting the program. Perform necessary error checking
to ensure that a non-negative number is passed on the command line.
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3.7

38

39

310

Repest the preceding exercise, this time using the CreateProcess0 in
the Win32 AR. In this ingtance, you will need to specify a separate
program to be invoked from CreateProcess(). It is this separate
program that will run as a child process outputting the Fibonacci
sequence. Perform necessary error checking to ensure that a non-
negative number is passed on the command line.

Modify the date server shown in Figure 3.19 <o that it delivers random
fortunes rather than the current date. Allow the fortunes to contain
multiple lines. The date client shown in Figure 3.20 can be used to read
the multi-line fortunes returned by the fortune server.

An echo server is a server that echoes back whatever it receives from a
client. For example, if aclient sendsthe server the string Hello there! the
server will respond with the exact data it received from the client—that
is, Hello there!

Write an echo server using the Java networking AR described in
Section 3.6.1. This server will wait for a client connection using the
accept () method. When a client connection is received, the server will
loop, performing the following steps:

* Read data from the socket into a buffer.
 Write the contents of the buffer back to the client.

The server will break out of the loop only when it has determined that
the client has closed the connection.

The date server shown in Fgure 319 uses the
java.i0.BufferedReader class. Buff eredReader extends the
java.i0 .Reader class, which is used for reading character streams.
However, the echo server cannot guarantee that it will read
characters from clients; it may receive binary data as well. The
class java.io.InputStream deds with data at the byte leve rather
than the character level. Thus, this echo server must use an object
that extends java.io.InputStream. The read() method in the
J ava.io.InputStream class returns —1 when the client has closed its
end of the socket connection.

In Exercise 36, the child process must output the Fibonacci sequence,
since the parent and child have their own copies of the data. Another
approach to designing this program is to establish a shared-memory
segment between the parent and child processes. This technique alows
the child to write the contents of the Fibonacci sequence to the shared-
memory segment and has the parent output the sequence when the child
completes. Because the memory is shared, any changes the child makes
to the shared memory will be reflected in the parent process as well. _
This program will be structured using rosix shared memory as
described in Section 35.1. The program fird requires creating the
data structure for the shared-memory segment. This is most easily
accomplished using a struct. Thisdata structure will contain two items:
(1) afixed-szed array of sizeMaXx_SEQUENCE that will hold the Fibonacci
values; and (2) the size of the sequence the child process is to generate
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—sequence._sizewheresequence_size < MAX.SEQUENCE. Theseitems
can be represented in a struct as follows:

#define MAX-SEQUENCE 10

typedef struct {
long fib_sequence [MAX SEQUENCE] ;
int sequence_size;

}shared. data;

The parent process will progress through the following steps:

a.  Accept the parameter passed on the command line and perform
error checking to ensure that the parameter is < MAX_SEQUENCE.

b. Create a shared-memory segment of size shared_data.
Attach the shared-memory segment to its address space.

d. Setthevalue of sequence_size to the parameter on the command
line.

e. Fork the child process and invoke the wait () system call to wait
for the child to finish.

f. Output the value of the Fibonacci sequence in the shared-memory
segment.

g. Detach and remove the shared-memory segment.

Because the child process is a copy of the parent, the shared-memory
region will be attached to the child's address space as well. The child
process will then write the Fibonacci sequence to shared memory and
finally will detach the segment.

One issue of concern with cooperating processes involves synchro-
nization issues. In this exercise, the parent and child processes must be
synchronized so that the parent does not output the Fibonacci sequence
until the child finishes generating the sequence. These two processes
will be synchronized using the wait () system cal; the parent process
will invoke wait (), which will cause it to be suspended until the child
process exits.

Most UNIX and Linux systems provide the ipcs command. This com-
mand lists the status of various POSIX interprocess communication
mechanisms, including shared-memory segments. Much of the informa-
tion for the command comes from the data structure struct shmid_ds,
which is available in the /usr/include/sys/shm.h file. Some of the
fields of this structure include:

e int shm segsz—size of the shared-memory segment

e short shm_nattch—number of attaches to the shared-memory
segment

e struct ipc_perm shm_perm—permission structure of the
shared-memory segment
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The struct ipc.perm data structure (which is available in the file
/usr/include/sys/ipc.h) contains the fields:

e unsigned short uid—identifier of the user of the
shared-memory segment
» unsigned short mode—permission modes
* key_t key (on Linux systems, ._key)—user-specified key identifier
The permission modes are set according to how the shared-memory

segment is established with the shmget () system call. Permissions are
identified according to the following:

mode | meaning |

0400 | ~Read permissior of owner.
0200 1.

Write permission. of owne

© 00027 |7 “Write permission of world:

Permissions can be accessed by using the bitwise AND operator &. For
example, if the statement mode & 0400 evaluatesto true, the permission
mode allows read permission by the owner of the shared-memory
segment.

Shared-memory segments can be identified according to a user-
specified key or according to the integer value returned from the
shmget () system call, which represents the integer identifier of the
shared-memory segment created. The shm_ds structure for a given
integer segment identifier can be obtained with the following shmctl ()
system cal:

/* identifier of the shared memory segment*/
int segment_id;
shm_ds shmbuffer;

shmctl (segment_id, IPC_STAT, &shmbuffer);

If successful, shmctl () returnsO; otherwise, it returns-1.

Write a C program that is passed an identifier for a shared-memory
segment. This program will invoke the shmctl () function to obtain its
shm_ds structure. It will then output the following values of the given
shared-memory segment:

* Segment 1D

. Ke)/
 Mode
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e Owner UID s
* Size

* Number of attaches

Project—UNIX Shell and History Feature

This project consists of modifying a C program which serves as a shell interface
that accepts user commands and then executes each command in a separate
process. A shell interface provides the user a prompt after which the next
command is entered. The example below illustrates the prompt sh> and the
user's next command: cat prog. c. Thiscommand displaysthe file prog. c on
the terminal using the UNIX cat command.

sh> cat prog.c

One technique for implementing a shell interface is to have the parent
process first read what the user enters on the command line (i.e. cat prog. c),
and then create a separate child process that performs the command- Unless
otherwise specified, the parent process waits for the child to exit before
continuing. This is similar in functionality to what is illustrated in Figure
3.11. However, UNIX shells typically aso allow the child process to run in the
background —or concurrently—as well by specifying the ampersand (&) at the
end of the command. By rewriting the above command as

sh> cat prog.c &

the parent and child processes now run concurrently.

The separate child process is created using the fork() systemcall and the
user's command is executed by using one of the system cals in the exec()
family (as described in Section 3.3.1).

Simple Shell

A C program that provides the basic operations of a command line shell is
supplied in Figure 3.25. This program is composed of two functions: main ()
and setup (). The setup () function reads in the user's next command (which
can be up to 80 characters), and then parses it into separate tokens that are used
to fill the argument vector for the command to be executed. (If the command
is to be run in the background, it will end with '&', and setupO will update
the parameter background so the main() function can act accordingly. This
program is terminated when the user enters <ControlxD> and setupO then
invokes exit ().

The main() function presents the prompt GMMAND> and then invokes
setupO, which waits for the user to enter a command. The contents of the
command entered by the user is loaded into the args array. For example, if
the user enters 1s -1 at the COMMAND-> prompt, args[0] becomes equal to
the string 1s and args[ 1] is set to the string to -1. (By “string”, we mean a
null-terminated, C-style string variable.)
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#include <stdioc.h> :
#include <unistd.h>

#def i ne MAX LINE 80

/** setup() reads in the next command |ine, separating it into
di stinct tokens using whitespace as delimiters.

setup{) nodifies the args paraneter so that it holds pointers
to the null-terminated strings that are the tokens in the nost
recent user command line as well as a NULL pointer, indicating
the end of the argument |ist, which cones after the string
pointers that have been assigned to args. */

voi d setup(char inputBuffer[] , char *args[],int *background)

/** full source code available online */

}

int main(void)

{

char inputBuffer [MAXLINE]; /* buffer to hold command entered */
int background; /* equals 1 if a conmand is followed by '& */
char *args [MAX LIN3/2 + 1] ; /* command |ine arguments */

while (1) {
background = 0;
printf (" COWAND->") ;
/* setup() calls exit{) when Contrel-D is entered */
setup (inputBuffer, args, fchackground);

/** the steps are:
(1) fork a child process using fork()

(2) the child process will invoke execvp()
(3) if background == 1, the parent will wait,
otherwise it will invoke the gsetupO function again. */

Figure 3.25 Outline of simple shell.

This project is organized into two parts: (1) creating the child process and
executing the command in the child, and (2) modifying the shell to allow a

history feature.

Creating a Child Process

The first part of this project is to modify the main() function in Figure 3.25 so
that upon returning from setup(), a child process is forked and executes the

command specified by the user.
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As noted above, the setup() function loads the contents of the args‘array
with the command specified by the user. This args array will be passed to the
execvp() function, which has the following interface:

execvp(char *command, char *params[]);

where command represents the commmand to be performed and params storesthe
parameters to this command. For this project, the execvp () function should be
invoked as execvp (args[0] ,args) ; besureto check thevalue of background
to determine if the parent process is to wait for the child to exit or not.

Creating a History Feature

The next task is to modify the program in Figure 325 so that it provides a
history feature that allows the user access up to the 10 most recently entered
commands. These commands will be numbered starting at 1 and will continue
to grow larger even past 10, eg. if the user has entered 35 commands, the 10
most recent commands should be numbered 26 to 35. This history feature will
be implementing using a few different techniques.

First, the user will be able to list these commands when he/she presses
<Control> <C>, which is the SGINT signal. UNIX systems use signals to
notify a process that a particular event has occurred. Signals may be either
synchronous or asynchronous, depending upon the source and the reason for
the event being signaled. Once a signal has been generated by the occurrence
of a certain event (eg., division by zero, illegal memory access, user entering
<Control> <C>, eic.), the signal is delivered to a process where it must be
handled. A process receiving a signal may handle it by one of the following
techniques:

e Ignoring the signa
e using the default signal handler, or

e providing a separate signal-handling function.

Signads may be handled by firg setting certain fields in the C structure
struct sigaction and then passing this structure to the sigaction()
function. Signals are defined in the include file /usr/include/sys/signal . h.
For example, thesignal SSGINT representsthe signal for terminating a program
with the control sequence <Control> <C>. The default signal handler for
SGINT isto terminate the program.

Alternatively, a program may choose to set up its own signal-handling
function by setting the sa_handler fidd in struct sigaction to the name of
the function which will handle the signal and then invoking the sigaction{()

function, passing it (1) the signal we are setting up a handler for, and (2) a . .

pointer to struct sigaction.

In Figure 326 we show a C program that uses the function han-
d1e_SIGINT() for handling the SIGINT signal. This function prints out the
message “Caught Control C” and then invokes the exit () function to ter-
minate the program. (We must use thewrite () function for performing output
rather than the more common printf () as the former is known as being
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#include <signal.h> ¢
#include <unistd.h>
#include <stdio.h>

#define BUFFER SZE 50
char buffer[BUFFER SZF] ;

/* the signal handling function */
void handle SIGINT ()
{

write (STDOUT FILENO, buffer, strlen (buf fer) ) ;

exit (0);

int mainfint argc, char *argv[])

{
/* set up the signal handler */
struct sigaction handler;
handler . sa_handler = handle_SIGINT;
sigaction (SIGINT, &handler, NULL)e

/* generate the output message */
strepy (buffer, "Caught Control C\n");

/* loop until we receive <ControlxC> */
while ()

il

return O;

Figure 3.26 Signal-handling program.

signal-safe, indicating it can be called from inside a signal-handling function;
such guarantees cannot be made of printf ().) This program will run in the
while (1) loop until the user enters the sequence <Control> <C>. When this
occurs, the signal-handling function handle SIGINT () isinvoked.

The signal-handling function should be declared above main() and
because control can be transferred to this function at any point, no parameters
may be passed to it this function. Therefore, any data that it must accessin your
program must be declared globally, i.e. at the top of the source file before your
function declarations. Before returning from the signal-handling function, it
should reissue the command prompt. :

If the user enters <Control><C>, the signal handler will output alist of the
most recent 10 commands. With this list, the user can run any of the previous
10 commands by entering r X where 'x' is the firgt letter of that command. If
more than one command starts with V, execute the most recent one. Also, the
user should be able to run the most recent command again by just entering V.
You can assume that only one space will separate the 'r' and the first letter and
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that the letter will be followed by "\n'. Again, 'r' alone will be immedjately
followed by the \n character if it iswished to execute the most recent command.

Any command that is executed in this fashion should be echoed on the
user's screen and the command is also placed in the history buffer as the next
command. (r x does not go into the history list; the actual command that it
specifies, though, does.)

It the user attempts to use this history facility to run a command and the
command is detected to be erroneous, an error message should be given to the
user and the command not entered into the history list, and the execvp()
function should not be called. (It would be nice to know about improperly
formed commands that are handed off to execvp() that appear to look valid
and are not, and not include them in the history as well, but that is beyond the
capabilities of this simple shell program.) You should also modify setup() so
it returns an int signifying if has successfully created a valid args list or not,
and the main () should be updated accordingly.
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The process model introduced in Chapter 3 assumed that a process was an
executing program with a single thread of control. Most modern operating
systems now provide features enabling a process to contain multiple threads of
control. This chapter introduces many concepts associated with multithreaded
computer systems, including a discussion of the APis for the Pthreads, Win32,
and Java thread libraries. We look at many issues related to multithreaded
programming and how it affects the design of operating systems. Finaly, we
explore how the Windows XP and Linux operating systems support threads at
the kernel level.

CHAPTER OBJECTIVES

» To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems.

» To discuss the APIs for Phtreads, Win32, and Java thread libraries.

Overview

A thread is a basic unit of CRU utilization; it comprises a thread ID, a program
counter, a register set, and a stack. It shares with other threads belonging
to the same process its code section, data section, and other operating-system
resources, such as open filesand signals. A traditional (or heavyweight) process
has a single thread of control. Tf a process has multiple threads of control, it
can perform more than one task at a time. Figure 4.1 illustrates the difference
between a traditional single-threaded process and a multithreaded process.

41.1 Motivation

Many software packages that run on modern desktop PCs are multithreaded.
An application typically is implemented as a separate process with several
threads of control. A web browser might have one thread display images or
text while another thread retrieves data from the network, for example. A
word processor may have a thread for displaying graphics, another thread
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Figure 4.1 Single-threaded and multithreaded processes.

for responding to keystrokes from the user, and a third thread for performing
spelling and grammar checking in the background.

In certain situations, a single application may be required to perform
several similar tasks. For example, a web server accepts client requests for
web pages, images, sound, and so forth. A busy web server may have several
(perhaps thousands) of clients concurrently accessing it. If the web server ran
as a traditional single-threaded process, it would be able to service only one
client at a time. The amount of time that a client might have to wait for its
request to be serviced could be enormous.

One solution is to have the server run as a single process that accepts
requests. When the server receives a request, it creates a separate process
to service that request. In fact, this process-creation method was in common
use before threads became popular. Process creation is time consuming and
resource intensive, as was shown in the previous chapter. If the new process
will perform the same tasks as the existing process, why incur all that overhead?
It is generally more efficient to use one process that contains multiple threads.
This approach would multithread the web-server process. The server would
create a separate thread that would listen for client requests; when arequest was
made, rather than creating another process, the server would create another
thread to service the request.

Threads also play avital rolein remote procedure cal (RPC) systems. Recall
from Chapter 3 that RPCs allow interprocess communication by providing a

communication mechanism similar to ordinary function or procedure cals. ...

Typicaly, RRC servers are multithreaded. When a server receives a message, it
services the message using a separate thread. This allows the server to service
several concurrent requests. Java's RM1 systems work similarly.

Finally, many operating system kernels are now multithreaded; several
threads operate in the kernel, and each thread performs a specific task, such
as managing devices or interrupt handling. For example, Solaris creates a set
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of threads in the kernel specifically for interrupt handling; Linux uses a kernel
thread for managing the amount of free memory in the system.

4.1.2 Benefits

The benefits of multithreaded programming can be broken down into four
major categories:

1. Responsiveness. Multithreading an interactive application may allow a
program to continue running even if part of it is blocked or is performing
a lengthy operation, thereby increasing responsiveness to the user. For
instance, a multithreaded web browser could still allow user interaction
in one thread while an image was being loaded in another thread.

2. Resource sharing. By default, threads share the memory and the
resources of the process to which they belong. The benefit of sharing
code and data is that it allows an application to have several different
threads of activity within the same address space.

3. Economy. Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it
is more economical to create and context-switch threads. Empirically
gauging the difference in overhead can be difficult, but in general it is
much more time consuming to create and manage processes than threads.
In Solaris, for example, creating a processis about thirty times slower than
is creating a thread, and context switching is about five times slower.

4. Utilization of multiprocessor architectures. The benefits of multithread-
ing can be greatly increased in a multiprocessor architecture, where
threads may be running in parallel on different processors. A single-
threaded process can only run on one CPU, no matter how many are
available. Multithreading on amulti-CPU machine increases concurrency.

4.2 Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support
for threads may be provided either at the user level, for user threads, or by the
kernel, for kernel threads. User threads are supported above the kernel and
are managed without kernel support, whereas kernel threads are supported
and managed directly by the operating system. Virtualy al contemporary
operating systems—including Windows XP, Linux, Mac OS X, Solaris, and
True4 UNIX (formerly Digital UNIX)—support kernel threads.

Ultimately, there must exist a relationship between user threads and kernel
threads. In this section, we look at three common ways of establishing this
relationship.

4.2.1 Many-to-One Model

The many-to-one model (Figure 4.2) maps many user-level threads to one
kernel thread. Thread management is done by the thread library in user
space, <o it is efficient; but the entire process will block if a thread makes a
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Figure 4.2 Many-to-one model.

blocking system call. Also, because only one thread can access the kernel at a
time, multiple threads are unable to run in parallel on multiprocessors. Green
threads—a thread library available for Solaris—uses this model, as does GNU
Portable Threads.

4.2.2 One-to-One Model

The one-to-one model (Figure 4.3) maps each user thread to a kernel thread. It
provides more concurrency than the many-to-one model by allowing another
thread to run when a thread makes a blocking system call; it also allows
multiple threads to run in parallel on multiprocessors. The only drawback to
this model is that creating a user thread requires creating the corresponding
kernel thread. Because the overhead of creating kernel threads can burden the
performance of an application, most implementations of this model restrict the
number of threads supported by the system. Linux, along with the family of
Windows operating systems—including Windows 95, 98, NT, 2000, and XP—
implement the one-to-one model.

4.2.3 Many-to-Many Model

The many-to-many model (Figure 4.4) multiplexes many user-level threads to
a smaller or equal number of kernel threads. The number of kernel threads
may be specific to either a particular application or a particular machine (an

+—-user thread

I
OO O O

Figure 4.3 One-to-one model.
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Figure 4.4 Many-to-many model.

application may be allocated more kernel threads on a multiprocessor than
on a uniprocessor). Whereas the many-to-one model allows the developer to
create as many user threads as she wishes, true concurrency is not gained
because the kernel can schedule only one thread at a time. The one-to-one
model allows for greater concurrency, but the developer has to be careful not
to create too many threads within an application (and in some instances may
be limited in the number of threads she can create). The many-to-many model
suffers from neither of these shortcomings: Developers can create as many user
threads as necessary, and the corresponding kernel threads can run in parallel
on a multiprocessor. Also, when a thread performs a blocking system call, the
kernel can schedule another thread for execution.

One popular variation on the many-to-many model still multiplexes many
user-level threads to a smaller or equal number of kernel threadsbut also allows
a user-level thread to be bound to a kernel thread. This variation, sometimes
referred to asthe two-level model (Figure 4.5), issupported by operating systems
such as IRIX, HP-UX, and Tru64 UNIX. The Solaris operating system supported
the two-level model in versions older than Solaris 9. However, beginning with
Solaris 9, this system uses the one-to-one model.

Thread Libraries

A thread library provides the programmer an AR for creating and managing
threads. There are two primary ways of implementing athread library. The first
approach is to provide alibrary entirely in user space with no kernel support.
All code and data structures for the library exist in user space. This means that
invoking a function in the library results in a loca function cal in user space
and not a system call.

The second approach is to implement a kernel-level library supported

directly by the operating system. In this case, code and data structures for
the library exist in kernel space. Invoking a function in the AR for the library
typically results in a system call to the kernel.

Three main thread libraries are in use today: (1) POSIX Pthreads, (2) Win32,
and (3) Java. Pthreads, the threads extension of the ROSX standard, may be
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Figure 4.5 Two-level model.

provided as either a user- or kernel-level library. The Win32 thread library is a
kernel-level library available on Windows systems. The Javathread AR allows
thread creation and management directly in Java programs. However, because
in most instances the WM is running on top of a host operating system, the Java
thread AR is typically implemented using a thread library available on the
host system. This means that on Windows systems, Java threads are typically
implemented using the Win32 API; UNIX and Linux systems often use Pthreads.

In the remainder of this section, we describe basic thread creation using
these three thread libraries. As an illustrative example, we design a multi-
threaded program that performs the summation of a non-negative integer in a
separate thread using the well-known summation function:

N
sum— Zf
i=0

For example, if N were 5, this function would represent the summation from 0
to 5, whichis 15. Each of the three programswill be run with the upper bounds
of the summation entered on the command line; thus, if the user enters 8, the
summation of the integer values from 0 to 8 will be output.

4.3.1 Pthreads

Pthreads refers to the POsIx standard (IEEE 1003.1c) defining an AR for thread
creation and synchronization. Thisis a specification for thread behavior, not an
implementation. Operating system designers may implement the specificationin
any way they wish. Numerous systems implement the Pthreads specification,
including Solaris, Linux, Mac OS X, and Tru64 UNIX. Sharewarei mplementations
are available in the public domain for the various Windows operating systems. .
as well.

The C program shown in Figure 4.6 demonstrates the basic Pthreads AR for
constructing a multithreaded program that cal culates the summation of a non-
negative integer in a separate thread. In a Pthreads program, separate threads
begin execution in a specified function. In Figure 4.6, this is the runner()
function. When this program begins, a single thread of control begins in
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#i ncl ude <pthread.h>
#include <gtdio.h>

int sum /* this data is shared by the thread(s) */
voi d *runnex (void *param; /* the thread */

int main(int argc, char *argv[])

pthread_t tid; /* the thread identifier */
pthread.attr_t attr; /* set of thread attributes */

if (argc !'=2) {
fprintf (stderr, "usage: a.out <integer value>\n");
return -1;

}

if (atoi(argv(il) < 0) {
fprintf (stderr, "%d nust be >= 0\n",atoi(argvI[l]));
return -1,

/* get the default attributes */
pthread.attr_init (&attr);

/* create the thread */

pthread create(&tid, &attr, runner, argv[1]) ;
/* wait for the thread to exit */
pthread join(tid, NULL) ;

printf ("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner {void *param)

{

int i, upper = atoi(param);

sSum= 0;

for (i =1; i <= upper; i++)
sum += i;

pthread exit(0) ;

}

Figure 4.6 Multithreaded C program using the Pthreads API.

main(). After some initialization, mainO creates a second thread that begins
control in the runner () function. Both threads share the global data sum.
Let's look more closdy at this program. All Pthreads programs must
include the pthread.h header file The statement pthread t tid declares
the identifier for the thread we will create. Each thread has a set of attributes,
including stack size and scheduling information. The pthread_attr_t attr
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declaration represents the attributes for the thread. We st the attributes in
the function cal pthread attr init C&attr). Because we did not explicitly
St any attributes, we use the default attributes provided. (In Chapter 5, we
will discuss some of the scheduling attributes provided by the Pthreads AR.) A
separate thread iscreated withthe pthread create() function cal. Inaddition
to passing the thread identifier and the attributes for the thread, we aso pass
the name of the function where the new thread will begin execution—in this
case, the runner() function. Last, we pass the integer parameter that was
provided on the command line, argv [1].

At this point, the program has two threads: the initid (or parent) thread
inmain() and the summation (or child) thread performing the summation
operation in the runner () function. After creating the summation thread,
the parent thread will wait for it to complete by calling the pthread_join()
function. The summation thread will complete when it cdls the function
pthread_exit (). Once the summation thread has returned, the parent thread
will output the value of the shared data sum.

4.3.2 Win32 Threads

The technique for creating threads using the Win32 thread library is smilar to
the Pthreads technique in severa ways. We illustrate the Win32 thread AR in
the C program shownin Figure4.7. Notice that we must includethewindows . h
header file when using the Win32 AR.

Just as in the Pthreads version shown in Figure 4.6, data shared by the
separate threads—in this case, Sum—are declared globaly (the DAGD data
type is an unsigned 32-bit integer. We aso define the Summation () function
that isto be performed in a separate thread. This function is passed a pointer to
avoid, which Win32 defines as LPVOD. The thread performing this function
sets the globd data Sm to the value of the summation from O to the parameter
passed to SummationO.

Threads are created in the Win32 AR using the CreateThreadO function
and—ijust &S in Pthreads—a &t of attributes for the thread is passed to this
function. These attributes include security information, the sze of the stack,
and a flag that can be st to indicate if the thread is to start in a suspended
state. In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it digible
to be run by the CRU scheduler). Once the summation thread is created, the
parent must wait for it to complete before outputting the value of Sm, as
the value is set by the summation thread. Recdl that the Pthread program
(Figure 46) had the parent thread wait for the summation thread using the
pthread_join() statement. We perform the equivalent of thisinthe Win32 AR
using thewWaitForSingleObject () function, which causes the creating thread
to block until the summeation thread has exited. (Wewill cover synchronization
objects in more detail in Chapter 6.

4.3.3 Java Threads

Threads are the fundamenta model of program execution in a Java program,
and the Java language and its AR provide arich set of features for the creation
and management of threads. All Javaprograms comprise at least asingle thread
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#i nci ude <windows.h> s
#include <stdioc.h>

DWORD Sum /* data is shared by the thread(s) */

/* the thread runs in this separate function */

DWORD WINAPI Summaticon(LPVOID Param)

{
DWORD Upper = * (DWORD*)Param;
for (DRDi = 0; i <= Upper; i++)
aAm += i;
return o;

int main(int argc, char *argv[])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param
/* perform sone basic error checking */
if (argc !'=2) {
fprintf (stderr, "An i nteger paranmeter is required\n");
return -1;

}

Param = atoi(argv[l]);

if (Paam < 0) {
fprintf (stdexryr,"An integer >= 0 is required\n");
return -1;

/1 create the thread
ThreadHandl e = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param // parameter to thread function
0, // default creation flags
&ThreadId); // returns the thread identifier

if (ThreadHandl e != NULL) {
[/ now wait for the thread to finish
vaitForSingleObject (ThreadHandle, INFINITE) ;

/!l close the thread handl e
CloseHandle (ThreadHandle) ;

printf ("sum = %d\n",Sum) ;

Figure 4.7 Multithreaded C program using the Win32 API.
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of control—even a Smple Java program consisting of only amain () méthod
runs as a single thread in the WM.

There are two techniques for creating threads in a Java program. One
approach is to create a new class that is derived from the Thread class and
to override its run () method. An alternative—and more commonly used —
technique is to define a class that implements the Runnable interface. The
Runnable interface is defined as follows:

public interface Runnable

{

public abstract void run();

When a class implements Runnable, it must define arun () method. The code
implementing the run() method is what runs as a separate thread.

Figure 48 shows the Java verson of a multithreaded program that
determines the summation of a non-negative integer. The Summation class
implements the Runnable interface. Thread creation is performed by creating
an object instance of the Thread class and passing the constructor a Runnable
object.

Creating a Thread object does not pecificaly create the new thread; rather,
it is the start() method that actualy crestes the new thread. Caling the
start () method for the new object does two things:

1. It alocates memory and initializes a new thread in the WM.

2. It cdls the run() method, making the thread eigible to be run by the
MM. (Note that we never cdl the run () method directly. Rather, we cdl
the start () method, and it cdls the run() method on our behalf.)

When the summation program runs, two threads are created by the VM.
The fird is the parent thread, which starts execution in the main () method.
The second thread is created when the start () method on the Thread object
is invoked. This child thread begins execution in the run() method of the
Summation class. After outputting the value of the summation, this thread
terminates when it exits from its run () method.

Sharing of data between threads occurs easily in Win32 and Pthreads, as
shared data are smply declared globaly. As a pure object-oriented language,
Java has no such notion of globd data; if two or more threads are to share
datain a Java program, the sharing occurs by passing reference to the shared
object to the appropriate threads. In the Java program shown in Figure 4.8, the
main thread and the summation thread share the the object instance of the Sm
class. This shared object is referenced through the appropriate getSum () and
setSum() methods. (You might wonder why we don't use an Integer object
rather than designing a new sum class. The reason is that the Integer dassis_ |
immutable—that iS, once itsvalue is s&t, it cannot change.)

Recd| that the parent threads in the Pthreads and Win32 libraries use
pthread join() and WaitForSingleObject() (respectively) to wait for
the summation threads to finish before proceeding. The join() method
in Java provides smilar functiondity. (Notice that join() can throw an
I nterruptedException, which we choose to ignore.)
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5 lass Qra

{

private int sum;

public int getSum{) {
return sum

'

public void setSum{int sum {
this.gum = sum
}
)

class Summation inplenents Runnabl e

{

private int upper;
private SUT. sunval ue;

public Surmation{int upper, Sum sunval ue) }
this.upper = upper;
this.sumValue = sunVal ue;

}

public void run() {
int sum= 0;

for (int i = 0; i <= upper; i++)}
sum+= i o
sumValue.setSum(gum) ;

}
}

public class Driver
{ .
public static void main{String[] args) {
if (args.length> 0) {
if (Integer.parseInt(args(0]) < 0)
System.err.printlnlargs[0] + " nust be >= 0."] ;
el se {
/Il create the object to be shared
Sum sumObject = new Sum() ;
int upper = Integer.parselnt(args[0]) ;
Thread thrd = new Thread(new Summatior {upper, sumObject)];
thrd.start () ;
try {
thrd.join();
System.out.println
("The sum of "+upper+" is "+sumCbject.getSum());
} catch (InterruptedExceptiorie) { }
}
!

el se
System.err.println("Usage: Sunmation <integer value>"); }

Figure 4.8 Java program for the summation of a non-negative integer.
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Threading Issues

In this section, we discuss some of the issues to consider with multithreaded
programs.

441 The fork() and exec() System Calls

In Chapter 3, we described how the fork () system cdl is used to create a
separate, duplicate process. The semantics of the fork() and exec() system
cdls change in a multithreaded program.

If one thread in a program cals f ork (), does the new process duplicate
al threads, or is the new process single-threaded? Some UNIX systems have
chosen to have two versions of fork (), one that duplicates dl threads and
another that duplicates only the thread that invoked the fork () system cdl.

The exec() system cal typicaly works in the same way as described
in Chapter 3. That is, if a thread invokes the exec () system cdl, the program
soecified in the parameter to exec () will replace the entire process—including
al threads.

Which of the two versions of fork () to use depends on the appllcatlon
If exec() is cdled immediately after forking, then duplicating dl threads is
unnecessary, as the program specified in the parametersto exec () will replace
the process. In this instance, duplicating only the calling thread is appropriate.
If, however, the separate process doesnot cal exec () afterforking, the separate
process should duplicate dl threads.
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4.4.2 Cancellation ?

Thread cancellation isthe task of terminating a thread before it has compl eted.
For example, if multiple threads are concurrently searching through a database
and one thread returns the result, the remaining threads might be canceled.
Another situation might occur when a user presses a button on aweb browser
that stops a web page from loading any further. Often, a web page is loaded
using several threads—each image is loaded in a separate thread. When a
user presses the stop button on the browser, all threads loading the page are
canceled.
A thread that is to be canceled is often referred to as the target thread.
Cancellation of a target thread may occur in two different scenarios:

1. Asynchronous cancellation. One thread immediately terminates the
target thread.

2. Deferred cancellation. The target thread periodically checks whether it
should terminate, allowing it an opportunity to terminate itself in an
orderly fashion.

The difficulty with cancellation occurs in situations where resources have
been alocated to a canceled thread or where a thread is canceled while in
the midst of updating data it is sharing with other threads. This becomes
especially troublesome with asynchronous cancellation. Often, the operating
system will reclaim system resources from a canceled thread but will not
reclaim al resources. Therefore, canceling a thread asynchronously may not
free a necessary system-wide resource. '

With deferred cancellation, in contrast, one thread indicates that a target
thread isto be canceled, but cancellation occurs only after the target thread has
checked aflag to determineif it should be canceled or not. This allows a thread
to check whether it should be canceled at a point when it can be canceled safely.
Pthreads refers to such points as cancellation points.

4.4.3 Signal Handling

A signal is used in UNIX systems to notify a process that a particular event has
occurred. A signal may be received either synchronously or asynchronously,
depending on the source of and the reason for the event being signaled. All
signals, whether synchronous or asynchronous, follow the same pattern:

1. A signal is generated by the occurrence of a particular event.
2. A generated signal is delivered to a process.
3. Once delivered, the signal must be handled.

synchronous  signals include illega memory  access and
division by 0. If a running program performs either of these actions, a signal
is generated. Synchronous signals are delivered to the same process that
performed the operation that caused the signal (that is the reason they are
considered synchronous).



140

Chapter 4 Threads

When a signal is generated by an event external to a running process, that
process receives the signal asynchronously. Examples of such signals iiiclude
terminating a process with specific keystrokes (such as <control><C>) and
having a timer expire. Typicaly, an asynchronous signal is sent to another
process.

Every signal may be handled by one of two possible handlers:

1. A default signal handler
2. A user-defined signal handler

Every signal has a default signal handler that is run by the kernel when
handling that signal. This default action can be overridden by a user-defined
signal handler that is called to handle the signal. Signals may be handled in
different ways. Some signals (such as changing the size of a window) may
simply be ignored; others (such as an illegal memory access) may be handled
by terminating the program.

Handling signals in single-threaded programs is straightforward; signals
are always delivered to a process. However, delivering signals is more
complicated in multithreaded programs, where a process may have several
threads. Where, then, should a signal be delivered?

In general, the following options exist:

1. Deliver the signal to the thread to which the signal applies.
2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.

4. Assign a specific thread to receive all signals for the process.

The method for delivering a signal depends on the type of signal generated.
For example, synchronous signals need to be delivered to the thread causing
the signal and not to other threads in the process. However, the situation with
asynchronous signals is not as clear. Some asynchronous signals—such as a
signal that terminates a process (<control><C>, for example)—should be
sent to all threads.

Most multithreaded versions of UNIX alow a thread to specify which
signals it will accept and which it will block. Therefore, in some cases, an asyn-
chronous signal may be delivered only to those threads that are not blocking
it. However, because signals need to be handled only once, asignal istypically
delivered only to the firg thread found that is not blocking it. The standard
UNIX function for delivering asignal iskill(aid_t aid, int signal); here,
we specify the process (aid) to which a particular signal is to be delivered.
However, POSIX Pthreads also provides the pthread kill(pthread t tid,

int signal) function, which allows a signal to be delivered to a specified . .

thread (tid.)

Although Windows does not explicitly provide support for signals, they
can be emulated using asynchronous procedur e calls (APCs). The ARC fecility
allows a user thread to specify a function that is to be caled when the user
thread receives notification of a particular event. As indicated by its name,
an ARC is roughly equivalent to an asynchronous signal in UNIX. However,
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whereas UNIX must contend with how to deal with signals in a multithreaded
environment, the ARC facility is more straightforward, as an ARC is delivered
to a particular thread rather than a process.

4.4.4 Thread Pools

In Section 4.1, we mentioned multithreading in a web server. In this situation,
whenever the server receives a request, it creates a separate thread to service
the request. Whereas creating a separate thread is certainly superior to creating
a separate process, a multithreaded server nonetheless has potential problems.
The first concerns the amount of time required to create the thread prior to
servicing the request, together with the fact that this thread will be discarded
once it has completed its work. The second issue is more troublesome: If we
allow al concurrent requests to be serviced in anew thread, we have not placed
abound on the number of threads concurrently active in the system. Unlimited
threads could exhaust system resources, such as CPU time or memory. One
solution to thisissue is to use a thread pool.

The general idea behind a thread pool is to create a number of threads at
process startup and place them into a pool, where they sit and wait for work.
When a server receives a regquest, it awakens a thread from this pool—if one
is available—and passes it the request to service. Once the thread completes
its service, it returnsto the pool and awaits more work. If the pool contains no
available thread, the server waits until one becomes free.

Thread pools offer these benefits:

1. Servicing arequest with an existing thread is usually faster than waiting
to create a thread.

2. A thread pool limits the number of threads that exist at any one point.
This is particularly important on systems that cannot support a large
number of concurrent threads.

The number of threads in the pool can be set heuristically based on factors
such as the number of CPUs in the system, the amount of physical memory,
and the expected number of concurrent client requests. More sophisticated
thread-pool architectures can dynamically adjust the number of threads in the
pool according to usage patterns. Such architectures provide the further benefit
of having a smaller pool—thereby consuming less memory—when the load
on the systemis low. '

The Win32 AR provides several functions related to thread pools. Using
the thread pool Ar1 is similar to creating a thread with the Thread Create ()
function, as described in Section 4.3.2. Here, a function that is to run as a
separate thread is defined. Such a function may appear as follows:

DAMORD WINAPI PoolFunction (AVOID Param) {

/**

* this function runs as a separate thread.

**/

}

A pointer to PoclFunction() is passed to one of the functions in the thread
pool AP, and a thread from the pool executes this function. One such member
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in the thread pool AR is the QueueUserWorkItem() function, which is passed
three parameters:

e LPTHREAD START ROUTINE Function—a pointer to the function that isto
run as a separate thread

* PVOID Param—the parameter passed to Function

» ULONG Flags-—flags indicating how the thread pool is to create and
manage execution of the thread

An example of an invocation is:
QueueUserWorkItem(&PoolFunction, NULL, 0);

This causes a thread from the thread pool to invoke Pool Function () on behalf
of the programmer. In this instance, we pass no parameters to PoolFunc-
tion(). Because we specify O as a flag, we provide the thread pool with no
special instructions for thread creation.

Other members in the Win32 thread pool AP1 include utilities that invoke
functions at periodic intervals or when an asynchronous 1/0 request compl etes.
Thejava.util. concurrent package in Java 15 provides a thread pool utility
aswell.

4.4.5 Thread-Specific Data

Threads belonging to a process share the data of the process. Indeed, this
sharing of data provides one of the benefits of multithreaded programming.
However, in some circumstances, each thread might need its own copy of
certain data. We will call such data thread-specific data. For example, in a
transaction-processing system, we might service each transaction in a separate
thread. Furthermore, each transaction may be assigned a unique identifier. To
associate each thread with its unique identifier, we could use thread-specific
data. Most thread libraries—including Win32 and Pthreads—provide some
form of support for thread-specific data. Java provides support as well.

4.4.6 Scheduler Activations

A fina issue to be considered with multithreaded programs concerns com-
munication between the kernel and the thread library, which may be required
by the many-to-many and two-level models discussed in Section 4.2.3. Such
coordination allows the number of kernel threads to be dynamically adjusted
to help ensure the best performance.

Many systems implementing either the many-to-many or two-level model
place an intermediate data structure between the user and kernel threads. This
data structure—typically known asalightweight process, or LWP—is shownin - -
Figure4.9. Tothe user-thread library, the LWP appearsto beavirtual processor on
which the application can schedule a user thread to run. Each LWP is attached
to a kernel thread, and it is kernel threads that the operating system schedules
to run on physical processors. If a kernel thread blocks (such as while waiting
for an 170 operation to complete), the LWP blocks as well. Up the chain, the
user-level thread attached to the LWP also blocks.
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Figure 4.9 Lightweight process (LWP)

An application may require any number of LWPs to run efficiently. Consider
a CPU-bound application running on a single processor. In this scenario, only
one thread can run at once, so one LWP is sufficient. An application that is1/0-
intensive may require multiple LWPs to execute, however. Typically, an LWP is
required for each concurrent blocking system call. Suppose, for example, that
five different file-read requests occur simultaneously. Five LWPs are needed,
because all could be waiting for 170 completion in the kernel. If a process has
only four LWPs then the fifth request must wait for one of the LWFs to return
from the kernel.

One scheme for communication between the user-thread library and the
kernel is known as scheduler activation. It works as follows: The kernel
provides an application with a set of virtual processors (LWPs), and the
application can schedule user threads onto an available virtual processor.
Furthermore, the kernel must inform an application about certain events. This
procedure is known as an upcall. Upcalls are handled by the thread library
with an upcall handler, and upcall handlers must run on a virtual processor.
One event that triggers an upcall occurs when an application thread is about to
block. In this scenario, the kernel makes an upcall to the application informing
it that a thread is about to block and identifying the specific thread. The kernel
then alocates a new virtual processor to the application. The application runs
an upcall handler on this new virtual processor, which saves the state of the
blocking thread and relinquishes the virtual processor on which the blocking
thread is running. The upcall handler then schedules another thread that is
eligible to run on the new virtual processor. When the event that the blocking
thread was waiting for occurs, the kernel makes another upcall to the thread
library informing it that the previously blocked thread is now eligible to run.
The upcall handler forthis event also requiresavirtual processor, and the kernel
may alocate a new virtual processor or preempt one of the user threads and
run the upcall handler on its virtual processor. After marking the unblocked
thread as eligible to run, the application schedules an eligible thread to run on
an available virtual processor.

Operating-System Examples

In this section, we explore how threads are implemented in Windows XP and
Linux systems.
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4.5.1 Windows XP Threads #

Windows XP implements the Win32 APl. The Win32 AR is the primary AR for
the family of Microsoft operating systems (Windows 95, 98, NT, 2000, and XP).
Indeed, much of what is mentioned in this section applies to this entire family
of operating systems.

A Windows XP application runs as a separate process, and each process
may contain one or more threads. The Win32 AR for creating threads is
covered in Section 4.3.2. Windows XP uses the one-to-one mapping described
in Section 4.2.2, where each user-level thread maps to an associated kernel
thread. However, Windows XP aso provides support for afiber library, which
provides the functionality of the many-to-many model (Section 4.2.3). By using
the thread library, any thread belonging to a process can access the address
space of the process.

The general components of a thread include:

» A thread ID uniquely identifying the thread
» A register set representing the status of the processor

» A user stack, employed when the thread is running in user mode, and a
kernel stack, employed when the thread is running in kernel mode

» A private storage area used by various run-time libraries and dynamic link
libraries (DLL9Y

The register set, stacks, and private storage area are known as the context
of the thread. The primary data structures of a thread include:

e ETHREAD—executive thread block
e KTHREAD—kernel thread block
e TEB—thread environment block

The key components of the ETHREAD include a pointer to the process
to which the thread belongs and the address of the routine in which the
thread starts control. The ETHREAD also contains a pointer to the corresponding
KTHREAD.

The KTHREAD includes scheduling and synchronization information for
the thread. In addition, the KTHREAD includes the kernel stack (used when the
thread is running in kernel mode) and a pointer to the TEB.

The ETHREAD and the KTHREAD exist entirely in kernel space; this means
that only the kernel can accessthem. The TEB is a user-space data structure that
is accessed when the thread is running in user mode. Among other fields, the
TEB contains the thread identifier, a user-mode stack, and an array for thread-

gpecific data (which Windows XP terms thread-local storage). The structure of*~ -

aWindows XP thread isillustrated in Figure 4.10.

4.5.2 Linux Threads

Linux provides the fork() system cal with the traditional functionality of
duplicating a process, as described in Chapter 3. Linux also provides the ability
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thread start

KTHREAD

© synchronization

kernel space user space
Figure 4.10 Data structures of a Windows XP thread.

to create threads using the clone() system call. However, Linux does not
distinguish between processes and threads. In fact, Linux generally uses the
term task—rather than process or thread—when referring to a flow of control
within a program. When clone 0 isinvoked, it is passed a set of flags, which
determine how much sharing is to take place between the parent and child
tasks. Some of these flags are listed below:

L
' CLONE: -FS File-systém_information:isishared:
 CLONE_VM The éérﬁ_e rh'erhd;ry s"pa'c:é is shared
CLONE_SIGHAND | - Signakhandlers are shared.
CLONE_FILES The set of open fifes is shared. 5;. g

For example, if clone() is passed the flags CLONE_FS, CLONE_VM,
CLONE_SIGHAND, and CLONE_FILES, the parent and child tasks will share the
same file-system information (such as the current working directory), the
same memory space, the same signal handlers, and the same set of open files.
Using clone() in this fashion is equivalent to creating a thread as described
in this chapter, since the parent task shares most of its resources with its child
task. However, if none of these flags are set when clone () is invoked, no
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sharing takes place, resulting in functionality similar to that provided By the
fork () system cal.

The varying level of sharing is possible because of the way a task is
represented in the Linux kernel. A unique kernel data structure (specificaly,
struct task_struct) exists for each task in the system. This data structure,
instead of storing data for the task, contains pointers to other data structures
where these data are stored —forexample, data structures that represent the list
of open files, signal-handling information, and virtual memory. When fork ()
isinvoked, a new task is created, along with a copy of al the associated data
structures of the parent process. A new task is also created when the clone ()
system cdl is made. However, rather than copying al data structures, the new
task points to the data structures of the parent task, depending on the set of
flags passed to clone ().

Summary

A thread is a flow of control within a process. A multithreaded process
contains several different flows of control within the same address space.
The benefits of multithreading include increased responsiveness to the user,
resource sharing within the process, economy, and the ability to take advantage
of multiprocessor architectures.

User-level threads are threads that are visible to the programmer and are
unknown to the kernel. The operating-system kernel supports and manages
kernel-level threads. In general, user-level threads are faster to create and
manage than are kerndl threads, as no intervention from the kernel is required.
Three different types of modelsrelate user and kernel threads: The many-to-one
model maps many user threads to a single kernel thread. The one-to-one model
maps each user thread to a corresponding kernel thread. The many-to-many
model multiplexes many user threads to a smaller or equal humber of kernel
threads.

Most modern operating systems provide kernel support for threads; among
these are Windows 98, NT, 2000, and XP, as well as Solaris and Linux.

Thread libraries provide the application programmer with an AR for
creating and managing threads. Three primary thread libraries are in common
use: POSIX Pthreads, Win32 threads for Windows systems, and Java threads.

Multithreaded programs introduce many challenges for the programmer,
including the semantics of the fork() and exec() system calls. Other issues
include thread cancellation, signal handling, and thread-specific data.

Exercises

4.1 Provide two programming examples in which multithreading does not
provide better performance than a single-threaded solution.

42 Describe the actions taken by a thread library to context switch between
user-level threads.
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Under what circumstances does a multithreaded solution using multi-
ple kernel threads provide better performance than a single-threaded
solution on a single-processor system?

Which of the following components of program state are shared across
threads in a multithreaded process?

a Register values
b. Heap memory
c. Global variables
d. Stack memory

Can a multithreaded solution using multiple user-level threads achieve
better performance on a multiprocessor system than on a single-
processor system?

As described in Section 4.5.2, Linux does not distinguish between
processes and threads. Instead, Linux treats both in the same way,
allowing a task to be more akin to a process or a thread depending
on the set of flags passed to the clone () system call. However, many
operating systems—such as Windows XP and Solaris—treat processes
and threads differently. Typically, such systems use a notation wherein
the data structure for a process contains pointers to the separate threads
belonging to the process. Contrast these two approaches for modeling
processes and threads within the kernel.

The program shown in Figure 4.11 uses the Pthreads APl. What would
be output from the program at LINE C and LINE P?

Consider a multiprocessor system and a multithreaded program written
using the many-to-many threading model. Let the number of user-level
threads in the program be more than the number of processors in the
system. Discuss the performance implications of the following scenarios.

a. Thenumber of kernel threads allocated to the program is less than
the number of processors.

b. The number of kernel threads allocated to the program is equal
to the number of processors.

c. The number of kernel threads allocated to the program is greater
than the number of processors but less than the number of
user-level threads.

Write a multithreaded Java, Pthreads, or Win32 program that outputs
prime numbers. This program should work as follows: The user will
run the program and will enter a number on the command line. The
program will then create a separate thread that outputs al the prime
numbers less than or equal to the number entered by the user.

Modify the socket-based date server (Figure 3.19) in Chapter 3 so that
the server services each client request in a separate thread.
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#include <pthread.h> s
#i ncl ude <stdio. h>

int value = 0;
void *runner(void *param); /* the thread */

int main{int argc, char *argv[])

int pid;
pthread_t tid,;
pthread.attr_t attr;

pid=fork() ;

if (pid == 0) {/* child process */
pthread attr.init (&attr);
pt hread_create {(&tid,&attzr, runner, NULL) ;
pthread_join(tid,NULL);
printf ("CHILD: value = %d",value); /* LINE C */

else if (pid > 0) {/* parent process */
wait (NULL) ;
printf ("PARENT: value = %d",value); /+ LINE P */

}

void *runner(void *param) {
val ue = 5;
pthread exit(0) ;

}

Figure 4.11 C program for question 4.7.

411 The Fibonacci sequence is the series of numbers 0,1,1,2,3,5,8,....
Formally, it can be expressed as:

fib()”—” 0
fib1 =1
ﬁb,, = fibnf] + f’lbnAZ

Write a multithreaded program that generates the Fibonacci series using
either the Java, Pthreads, or Win32 thread library. This program should

work as follows: The user will enter on the command line the number

of Fibonacci numbers that the program is to generate. The program will
then create a separate thread that will generate the Fibonacci numbers,
placing the sequence in data that is shared by the threads (an array is
probably the most convenient data structure). When the thread finishes
execution, the parent thread will output the sequence generated by
the child thread. Because the parent thread cannot begin outputting
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the Fibonacci sequence until the child thread finishes, this will yequire
having the parent thread wait for the child thread to finish, using the
techniques described in Section 4.3.

412 Exercise 39 in Chapter 3 specifies designing an echo server using the
Javathreading AP. However, this server is single-threaded, meaning the
server cannot respond to concurrent echo clients until the current client
exits. Modify the solution to Exercise 39 so that the echo server services
each client in a separate request.

Project—Matrix Multiplication

Given two matrices A and B, where A is amatrix with M rows and K columns
and matrix B contains K rows and N columns, the matrix product of Aand B
is matrix C, where C contains M rows and N columns. The entry in matrix C
for row i column /' (C; ;) isthe sum of the products of the elements for row i in
matrix A and column j in matrix B. That is,

K
CH' = Z AJ'.H x Bu.j

n=\

For example, if Awere a 3-by-2 matrix and B were a 2-by-3 matrix, element
Cs1would be thesum of As; X Bi; and As> X Bag.

For this project, calculate each element C; ; inaseparate worker thread. This
will involve creating M x N worker threads. The main—or parent—thread
will initialize the matrices A and B and allocate sufficient memory for matrix
C, which will hold the product of matrices A and B. These matrices will be
declared as global data so that each worker thread has accessto A, B, and C.

Matrices Aand B can be initialized statically, as shown below:

#define M 3
#define K 2
#define N 3

1

int A M [K] = { {1,4}, {2,5}, {3,6
int B [K][N] ={ {8,7,6}, {5,4,3}}
int C M [N];

Alternatively, they can be populated by reading in values from a file.
Passing Parameters to Each Thread

The parent thread will create M x N worker threads, passing each worker the
values of row i and column j that it isto use in calculating the matrix product.
This requires passing two parametersto each thread. The easiest approach with
Pthreads and Win32 is to create a data structure using a struct. The members
of this structure are i and j, and the structure appears as follows:
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,/* structure for passing data to threads */ 7
struct v
{

int i; /* row */

int j; /* coumn */'

}i

Bath the Pthreads and Win32 programs will create the worker threads
using a strategy similar to that shown below:

/* W have to create M* N worker threads */
for (i =0; i <M, i ++;
for (j =0;j) <N j++) {
struct v *data = (struct v *) malloc(sizeof (struct v)) ;
data->i = i;
data->j = j;
/* Now create the thread passing it data as a parameter */
)
}

The data pointer will be passed to ether the pthread_create () (Pthreads)
function or the CreateThreadO (Win32) function, which in turn will pass it
as a parameter to the function that is to run as a separate thread.

Sharing of data between Java threads is different from sharing between
threads in Pthreads or Win32. One approach is for the main thread to creste
and initidlize the matrices A, B, and C. This main thread will then cregte the
worker threads, passing the three matrices—along withrow i and column j —
to tfhﬁ constructor for eech worker. Thus, the outline of aworker thread appears
asfollows:

public class WorkerThread i nplenments Runnable

{

private int row;
private int col;
privateint [] [] A
privateint [] [] B;
privateint [] [] C

public WorkerThread(int row, int col, int[] [] A
int[][]1 B int[][] § {
this.row = row,
this.c col;
this.A
this.B
this.C

<

nonon 22

0 w>

i

public void run() {
/* calculate the matrix product in Cirow]l [col] */
}
}
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#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread.t wor ker s [NUM_THREADS] ;

for (int i = 0; i < NUM.THREADS; i++)
pthread join (workers[i] , NULL) ;

Figure 4.12 Phtread code for joining ten threads.

Waiting for Threads to Complete

Once al worker threads have completed, the main thread will output the
product contained in matrix C. This requires the main thread to wait for
all worker threads to finish before it can output the value of the matrix
product. Severa different strategies can be used to enable a thread to wait
for other threads to finish. Section 4.3 describes how to wait for a child
thread to complete using the Win32, Pthreads, and Java thread libraries.
Win32 provides the WaitForSingleObject () function, whereas Pthreads
and Java use pthread_join() and join(), respectively. However, in these
programming examples, the parent thread waits for a single child thread to
finish; completing this exercise will require waiting for multiple threads.

In Section 4.3.2, we describe the WaitForSingleObject () function, which
is used to wait for a single thread to finish. However, the Win32 AR also
provides the WaitForMultipleObjects() function, which is used when
waiting for multiple threads to complete. WaitForMultipleObjects() is
passed four parameters:

1. The number of objects to wait for
2. A pointer to the array of objects
3. A flagindicating if al objects have been signaled

4. A timeout duration (or INFINITE)

For example, if THandles is an array of thread HANDLE objects of size N, the
parent thread can wait for al its child threads to complete with the statement:

WaitForMultipleObjects(N, THandles, TRUE [INFINITE);

A simple strategy for waiting on several threads using the Pthreads
pthread_join() or Javas join() is to enclose the join operation within a
simple forloop. For example, you could join on ten threads using the Pthread
code depicted in Figure 4.12. The equivalent code using Java threads is shown
in Figure 4.13.

Bibliographical Notes

Thread performance issues were discussed by Anderson et al. [1989], who
continued their work in Anderson et a. [1991] by evaluating the performance
of user-level threads with kernel support. Bershad et al. [1990] describe
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final static int NUM.THREADS =10; +

/* an array of threads to be joined upon */
Thread[] workers = new Thread [NUM_THREZADS] ;

for (int i = 0; i < NUMTHREARDS; i++} {
try {
workers [i] .join () ;
Jcatch (InterruptedException ie) {}

Figure 4.13 Java code for joining ten threads.
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supporting user-level threads. An analysis of an optimal thread-pool size can
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Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta
and Young [1998] compare Windows NT and Solaris threads on a symmetric
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on
Linux, Windows, and Solaris.
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and Cesati [2002] explain how Linux handles threading.
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5.1

CRU scheduling is the basis of multiprogrammed operating systems. By
switching the CRU among processes, the operating system can make the
computer more productive. In this chapter, we introduce basic CPU-scheduling
concepts and present several CPU-scheduling algorithms. We also consider the
problem of selecting an algorithm for a particular system.

In Chapter 4, we introduced threads to the process model. On operating
systems that support them, it is kernel-level threads—not processes—that are
in fact being scheduled by the operating system. However, the terms process
scheduling and thread scheduling are often used interchangeably. In this
chapter, we use process scheduling when discussing general scheduling concepts
and thread scheduling to refer to thread-specific ideas.

CHAPTER OBJECTIVES

» To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems.

* To describe various CPU-scheduling algorithms,

» To discuss evaluation criteria for selecting a CPU-scheduling algorithm for
a particular system.

Basic Concepts

In a single-processor system, only one process can run at a time; any others
must wait until the CRU is free and can be rescheduled. The objective of
multiprogramming is to have some process running at al times, to maximize
CRU utilization. The idea is relatively simple. A process is executed until”
it must wait, typically for the completion of some I/0 request. In a simple
computer system, the CPU then just sits idle. All this waiting time is wasted,;
no useful work is accomplished. With multiprogramming, we try to use this
time productively. Severa processes are kept in memory at one time. When
one process has to wait, the operating system takes the CRU away from that
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process and gives the CRU to another process. This pattern continues. Every
time one process has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function.
Almost al computer resources are scheduled before use. The CRU is, of course,
one of the primary computer resources. Thus, its scheduling is central to
operating-system design.

5.1.1 CPU-I/O Burst Cycle

The success of CPU scheduling depends on an observed property of processes:
Process execution consists of a cycle of CRU execution and 1/0 wait. Processes
alternate between these two states. Process execution begins with a CRU burst.
That is followed by an 170 burst, which is followed by another CPU burst, then
another /0 burst, and so on. Eventually, the final CPU burst ends with a system
request to terminate execution (Figure 5.1).

The durations of CRU bursts have been measured extensively. Although
they vary greatly from process to process and from computer to computer,
they tend to have a frequency curve similar to that shown in Figure 5.2. The
curve is generally characterized as exponential or hyperexponential, with a
large number of short CRU bursts and a small number of long CPU bursts.
An I/0-bound program typically has many short CRU bursts. A CPU-bound

load store
add store
read from file

~ CPU burst

wait for /© - 1/O burst

store increment

—_— A A A

index * CPU burst
write to file

wait for /0 e |/Q burst
load store
add store - CPU burst

read from file

— AN

wait for /O J I/O burst

Figure 5.1 Alternating sequence of CPU and /O bursts.
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Figure 5.2 Histogram of CPU-burst durations.

program might have a few long CPU bursts. This distribution can be important
in the selection of an appropriate CPU-scheduling algorithm.

5.1.2 CPU Scheduler

Whenever the CRU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CRU scheduler). The scheduler selects a
process from the processes in memory that are ready to execute and allocates
the CRU to that process.

Note that the ready queueis not necessarily a first-in, first-out (FIFO) queue.
As we shall see when we consider the various scheduling algorithms, a ready
gueue can be implemented as a HFO queue, a priority queue, atree, or simply
an unordered linked list. Conceptually, however, al the processes in the ready
gueue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCB9) of the processes.

5.1.3 Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-.
stances:

1. When a process switches from the running state to the waiting state (for
example, as the result of an I/0 request or an invocation of wait for the
termination of one of the child processes)
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2. When a process switches from the running state to the ready state {ior
example, when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for
example, a completion of 1/0)

4. When aprocess terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process
(if one exigts in the ready queue) must be selected for execution. There is a
choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say
that the scheduling scheme is nonpreemptive or cooperative; otherwise, it
is preemptive. Under nonpreemptive scheduling, once the CRU has been
alocated to aprocess, the process keeps the CRU until it rel eases the CPU either
by terminating or by switching to the waiting state. This scheduling method
was vised by Microsoft Windows 3x; Windows 95 introduced preemptive
scheduling, and al subsequent versions of Windows operating systems have
used preemptivescheduling. TheMac OSX operating system for the Macintosh
uses preemptive scheduling; previous versions of the Macintosh operating
system relied on cooperative scheduling. Cooperative scheduling is the only
method that can be used on certain hardware platforms, because it does not
require the special hardware (for example, a timer) needed for preemptive
scheduling.

Unfortunately, preemptive scheduling incurs a cost associated with access
to shared data. Consider the case of two processes that share data. While one
is updating the data, it is preempted so that the second process can run. The
second process then tries to read the data, which are in an inconsistent state. In
such situations, we need new mechanisms to coordinate access to shared data;
we discuss this topic in Chapter 6.

Preemption also affects the design of the operating-system kernel. During
the processing of a system call, the kernel may be busy with an activity on
behaf of a process. Such activities may involve changing important kernel
data (for instance, 1/0 queues). What happens if the process is preempted in
the middle of these changes and the kernel (or the device driver) needs to
read or modify the same structure? Chaos ensues. Certain operating systems,
including most versions of UNIX, deal with this problem by waiting either
for a system cal to complete or for an 170 block to take place before doing a
context switch. This scheme ensures that the kernel structure is simple, since
the kernel will not preempt a process while the kernel data structures are in
an inconsistent state. Unfortunately, this kernel-execution model is a poor one
for supporting rea-time computing and multiprocessing. These problems, and
their solutions, are described in Sections 54 and 19.5.

Because interrupts can, by definition, occur at any time, and because
they cannot always be ignored by the kernel, the sections of code affected
by interrupts must be guarded from simultaneous use. The operating system
needs to accept interrupts at almost al times; otherwise, input might be lost or
output overwritten. So that these sections of code are not accessed concurrently
by several processes, they disable interrupts at entry and reenable interrupts
a exit. It is important to note that sections of code that disable interrupts do
not occur very often and typically contain few instructions.
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5.1.4 Dispatcher

k3

Another component involved in the CPU-scheduling function is the dispatcher.
The dispatcher isthe modul e that gives control of the CRU to the process sel ected
by the short-term scheduler. This function involves the following:

» Switching context
» Switching to user mode
» Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every
process switch. The time it takes for the dispatcher to stop one process and
start another running is known as the dispatch latency.

Scheduling Criteria

Different CRU scheduling algorithms have different properties, and the choice
of a particular algorithm may favor one class of processes over another. In
choosing which algorithm to use in a particular situation, we must consider
the properties of the various algorithms.

Many criteria have been suggested for comparing CPU scheduling algo-
rithms. Which characteristics are used for comparison can make a substantial
difference in which algorithm is judged to be best. The criteria include the
following:

* CPU utilization. We want to keep the CPU as busy as possible. Concep-
tually, CRU utilization can range from 0 to 100 percent. In areal system, it
should range from 40 percent (for a lightly loaded system) to 90 percent
(for a heavily used system).

» Throughput. If the CRU is busy executing processes, then work is being
done. One measure of work is the number of processes that are completed
per time unit, called throughput. For long processes, this rate may be one
process per hour; for short transactions, it may be 10 processes per second.

e Turnaround time. From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing 1/0.

* Waiting time. The CRU scheduling algorithm does not affect the amount
of time during which a process executes or does 1/0; it affects only the- -
amount of time that a process spends waiting in the ready queue. Waiting
time is the sum of the periods spent waiting in the ready queue.

* Response time. In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early
and can continue computing new results while previous results are being
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output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, caled
response time, is the time it takes to start responding, not the time it takes
to output the response. The turnaround time is generally limited by the
speed of the output device.

Itisdesirable to maximize CRU utilization and throughput and to minimize
turnaround time, waiting time, and response time. In most cases, we optimize
the average measure. However, under some circumstances, it is desirable
to optimize the minimum or maximum values rather than the average. For
example, to guarantee that all users get good service, we may want to minimize
the maximum response time.

Investigators have suggested that, for interactive systems (such as time-
sharing systems), it is more important to minimize the variance in the response
time than to minimize the average response time. A system with reasonable
and predictable response time may be considered more desirable than a system
that is faster on the average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize variance.

As we discuss various CPU-scheduling algorithms in the following section,
we will illustrate their operation. An accurate illustration should involve many
processes, each being a sequence of several hundred CPU burstsand 1/0 bursts.
For simplicity, though, we consider only one CRU burst (in milliseconds) per
process in our examples. Our measure of comparison is the average waiting
time. More elaborate evaluation mechanisms are discussed in Section 5.7.

Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processes
in the ready queue is to be allocated the CPU. There are many different CRU
scheduling algorithms. In this section, we describe several of them.

5.3.1 First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS scheduling algorithm. With this scheme, the process that requests the
CRU firdt is allocated the CRU first. The implementation of the FOFS policy is
easily managed with a HFO queue. When a process enters the ready queue, its
RCB islinked onto the tail of the queue. When the CPU is freg, it is allocated to
the process at the head of the queue. The running processis then removed from
the queue. The code for FOFS scheduling is simple to write and understand.

The average waiting time under the FCFS policy, however, is often quite
long. Consider the following set of processes that arrive at time 0, with the
length of the CRU burst given in milliseconds:

Process Burst Time
P 24

2
w
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If the processes arrivein the order Py, P>, P3, and are served in FCFS grder,
we get the result shown in the following Gantt chart:

Py Ps P3

0 24 27 30

The waiting time is 0 milliseconds for process P, 24 milliseconds for process
P,, and 27 milliseconds for process P;. Thus, the average waiting time is (O
+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order P», P3, P,
however, the results will be as shown in the following Gantt chart:

P, | Ps P

(0] 3 6 30

The average waiting timeisnow (6 + 0 + 3)/3 = 3 milliseconds. This reduction
is substantial. Thus, the average waiting time under an FOFS policy is generally
not minimal and may vary substantially if the process's CPU burst times vary
greatly.

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many 1/0-bound
processes. As the processes flow around the system, the following scenario
may result. The CPU-bound process will get and hold the CPU. During this
time, al the other processes will finish their 1/0 and will move into the ready
gueue, waiting for the CPU. While the processes wait in the ready queue, the
1/0 devices are idle. Eventually, the CPU-bound process finishes its CRU burst
and moves to an 1/0 device. All the I/O-bound processes, which have short
CPU bursts, execute quickly and move back to the 1/0 queues. At this point,
the CRU dits idle. The CPU-bound process will then move back to the ready
gueue and be allocated the CPU. Again, al the1/0 processes end up waiting in
the ready queue until the CPU-bound process is done. There is a convoy effect
as al the other processes wait for the one big process to get off the CRU. This
effect results in lower CRU and device utilization than might be possible if the
shorter processes were allowed to go first.

The FCFS scheduling algorithm is nonpreemptive. Once the CRU has been
allocated to a process, that process keepsthe CRU until it releasesthe CPU, either
by terminating or by requesting 1/0. The FCFS algorithm is thus particularly
troublesome for time-sharing systems, where it is important that each user get
a share of the CRU at regular intervals. It would be disastrous to alow one
process to keep the CPU for an extended period.

5.3.2 Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
process's next CRU burst. When the CRU isavailable, it isassigned to the process
that has the smallest next CRU burst. If the next CRU bursts of two processes are
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the same, FCFS scheduling is used to break the tie. Note that amore appropriate
term for this scheduling method would be the shortest-next-CPU-bur st algorithm,
because scheduling depends on the length of the next CRU burst of a process,
rather than its total length. We use the term SF because most people and
textbooks use this term to refer to this type of scheduling.

As an example of SF scheduling, consider the following set of processes,
with the length of the CRU burst given in milliseconds:

Process Burst Time
Py
P,
P
Py

w ~Nooo,

Using SF scheduling, we would schedule these processes according to the
following Gantt chart:

P4 Py Pg Ps

0 3 9 16 24

The waiting time is 3 milliseconds for process P\, 16 milliseconds for process
P>, 9 milliseconds for process P;, and O milliseconds for process P4. Thus, the
average waiting timeis (3 + 16 + 9 + 0)/4 - 7 milliseconds. By comparison, if
we were using the FOFS scheduling scheme, the average waiting time would
be 10.25 milliseconds.

The SF scheduling algorithm is provably optimal, in that it gives the
minimum average waiting time for a given set of processes. Moving a short
process before along one decreases the waiting time of the short process more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SF algorithm is knowing the length of the next
CRU request. For long-term (job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the
job. Thus, users are motivated to estimate the process time limit accurately,
since a lower value may mean faster response. (Too low a value will cause
a time-limit-exceeded error and require resubmission.) SF scheduling is used
frequently in long-term scheduling.

Although the SF algorithm isoptimal, it cannot be implemented at the level
of short-term CRU scheduling. There is no way to know the length of the next
CPU burst. One approach is to try to approximate SF scheduling. We may not .
know the length of the next CPU burst, but we may be able to predict its value.
We expect that the next CPU burst will be similar in length to the previous ones.
Thus, by computing an approximation of the length of the next CRU burst, we
can pick the process with the shortest predicted CRU burst.

The next CPU burst is generally predicted as an exponential average of the
measured lengths of previous CRU bursts. Let ¢, be the length of the nth CRU
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burst, and let 7,..; be our predicted value for the next CPU burst. Then, for a, 0
< ac< ], define

Tppr =aby (- &)1,

This formula defines an exponential average. The value of £, contains our
most recent information; =, stores the past history. The parameter « controls
the relative weight of recent and past history in our prediction. If « = O, then
Th+1 = Ty, @nd recent history has no effect (current conditions are assumed
to be transient); if « = 1, then 1,7 — t,, and only the most recent CRU burst
matters (history is assumed to be old and irrelevant). More commonly, a =
1/2, so recent history and past history are equally weighted. The initial 7, can
be defined as a constant or as an overall system average. Figure 5.3 shows an
exponential average with a -1/2 and 7, = 10.

To understand the behavior of the exponential average, we can expand the
formula for 7,4, by substituting for =,, to find

il = at, + {1 - at, 4=+ {1 - a)"-(xt,,_‘,- oo+ (1= ) L.

Sinceboth aand (1 — &) arelessthan or equal to 1, each successive term has
less weight than its predecessor.

The SF algorithm can be either preemptive or nonpreemptive. The choice
ariseswhen anew process arrives at the ready queuewhileaprevious processis
still executing. The next CPU burst of the newly arrived process may be shorter
than what is left of the currently executing process. A preemptive SF algorithm

T, 10 gk e — o Y. P N A 2 .w e sG]

8 s o s s s i s s |
t/ 6 . i 7]

——-/
4
] EESS— N - -
1 i
time. >

CPU burst (f) 6 4 6 4 13 13 13

"guess” (1) 10 8 6 6 5 9 11 12

Figure 5.3 Prediction of the length of the next CPU burst.
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will preempt the currently executing process, whereas a nonpreemptive SF
algorithm will alow the currently running process to finish its CRU burst.
Preemptive SF scheduling is sometimes called shortest-remaining-time-first
scheduling.

As an example, consider the following four processes, with the length of
the CPU burst given in milliseconds:

Process Arrival Time Burst Time

Py 0 8
P, 1 4
P 2 9
Py 3 5

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SF scheduleis as depicted
in the following Gantt chart:

Py Py P4 ' 131 P3

Process P, isstarted at time O, sinceit is the only processin the queue. Process
P> arrives at time 1. The remaining time for process Pi (7 milliseconds) is
larger than the time required by process P, (4 milliseconds), so process P; is
preempted, and process P, is scheduled. The average waiting time for this
exampleis((10 - 1) + (1 ~1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds.
Nonpreemptive SF scheduling would result in an average waiting time of 7.75
milliseconds.

5.3.3 Priority Scheduling

The SF algorithmis a special case of the general priority scheduling algorithm.
A priority is associated with each process, and the CFU is allocated to the process
with the highest priority. Equal-priority processes are scheduled in FCFS order.
An SF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CRU burst. The larger the CRU burst, the lower
the priority, and vice versa. '

Note that we discuss scheduling in terms of high priority and low priority.
Priorities are generally indicated by some fixed range of numbers, such as 0
to 7 or O to 4,095. However, there is no general agreement on whether O is the
highest or lowest priority. Some systems use low numbers to represent low
priority; others use low numbers for high priority. This difference can lead to
confusion. In this text, we assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have
arrived at time O, in the order P;, P, «» -, P5, with the length of the CRU burst
given in milliseconds:
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Process Burst Time Priority s
P 10 3
P, 1 1
P 2 4
Py 1 5
Ps 5 2

Using priority scheduling, we would schedul e these processes according to the
following Gantt chart:

Py Pg Py Py Py

] 1 & 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externaly. Internally defined
priorities use some measurable quantity or quantities to compute the priority
of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average 1/0 burst to average CPU burst have been
used in computing priorities. External priorities are set by criteria outside the
operating system, such as the importance of the process, the type and amount
of funds being paid for computer use, the department sponsoring the work,
and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority
of the currently running process. A preemptive priority scheduling algorithm
will preempt the CPU if the priority of the newly arrived process is higher
than the priority of the currently running process. A nonpreemptive priority
scheduling algorithm will simply put the new process at the head of the ready
queue.

A major problem with priority scheduling algorithms is indefinite block-
ing, or starvation. A process that is ready to run but waiting for the CRU can
be considered blocked. A priority scheduling algorithm can leave some low-
priority processes waiting indefinitely. In a heavily loaded computer system, a
steady stream of higher-priority processes can prevent a low-priority process
from ever getting the CPU. Generally, one of two things will happen. Either the
process will eventually be run (at 2 AM. Sunday, when the system is finaly
lightly loaded), or the computer system will eventually crash and lose all
unfinished low-priority processes. (Rumor has it that, when they shut down
the IBM 704 at MIT in 1973, they found a low-priority process that had been
submitted in 1967 and had not yet been run.)

A solution to the problem of indefinite blockage of low-priority processes
is aging. Agingis atechnique of gradually increasing the priority of processes
that wait in the system for a long time. For example, if priorities range from
127 (low) to O (high), we could increase the priority of a waiting process by
1 every 15 minutes. Eventualy, even a process with an initial priority of 127
would have the highest priority in the system and would be executed. In fact,
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it would take no more than 32 hours for a priority-127 process to age to a
priority-0 process.

5.3.4 Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum or time
dice, isdefined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a HFO queue of
processes. New processes are added to the tail of the ready queue. The CRU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CRU
voluntarily. The scheduler will then proceed to the next process in the ready
gueue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next
process in the ready queue.

The average waiting time under the RR policy is often long. Consider the
following set of processes that arrive at time 0, with the length of the CRU burst
given in milliseconds:

Process Burst Time

P 24
Py 3
Py 3

If we use a time quantum of 4 milliseconds, then process P, gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CRU is given to the next process in the queue,
process P,. Since process £ does not need 4 milliseconds, it quits before its
time quantum expires. The CPU is then given to the next process, process P3.
Once each process has received 1 time quantum, the CPU is returned to process
P, for an additional time quantum. The resulting RR schedule is

Pl P2 P3 Pl Py Py Pl P]_

0 4 7 10 14 %8 22 26 30

The average waiting time is 17/3 = 5.66 milliseconds.
In the RR scheduling algorithm, no process is allocated the CRU for more
than 1 time quantum in a row (unless it is the only runnable process). If a
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process's CFU burst exceeds 1 time quantum, that process is preempted and is
put back in the ready queue. The RR scheduling algorithm is thus preemptive.

If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CRU time in chunks of at most g time units.
Each process must wait no longer than (n — 1) x g time units until its
next time quantum. For example, with five processes and atime quantum of 20
milliseconds, each processwill get up to 20 milliseconds every 100 milliseconds.

The performance of the RR algorithm depends heavily on the size of the
time quantum. At one extreme, if the time quantum is extremely large, the RR
policy is the same as the FCFS policy If the time quantum is extremely small
(say, 1 millisecond), the RR approachiscalled processor sharingand (in theory)
creates the appearance that each of n processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement ten peripheral processors with
only one set of hardware and ten sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in ten slow processors rather than one fast one. (Actualy, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than ten real processors would
have been.)

In software, we need also to consider the effect of context switching on the
performance of RR scheduling. Let us assume that we have only one process of
10 time units. If the quantum is 12 time units, the process finishes in lessthan 1
time quantum, with no overhead. If the quantum is 6 time units, however, the
process requires 2 quanta, resulting in a context switch. If the time quantum s
1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly (Figure 5.4).

Thus, we want the time quantum to be large with respect to the context-
switch time. If the context-switch time is approximately 10 percent of the
time quantum, then about 10 percent of the CRU time will be spent in context
switching. In practice, most modern systems have time quanta ranging from
10 to 100 milliseconds. The time required for a context switch is typically less
than 10 microseconds; thus, the context-switch time is a small fraction of the
time quantum.

process time = 10 quantum context
switches
12 0
0 10
_ 6 1
0 6 10
1 9

Figure 5.4 The way in which a smaller time quantum increases context switches.
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average turnaround time

I S

time quantum
Figure 5.5 The way in which turnaround time varies with the time quantum.

Turnaround time also depends on the size of the time quantum. Aswe can
see from Figure 5.5, the average turnaround time of a set of processes does
not necessarily improve as the time-quantum size increases. In general, the
average turnaround time can be improved if most processes finish their next
CPU burst in a single time quantum. For example, given three processes of 10
time units each and a quantum of 1 time unit, the average turnaround timeis
29. If the time quantum is 10, however, the average turnaround time drops to
20. If context-switch time is added in, the average turnaround time increases
for a smaller time quantum, since more context switches are required.

Although the time quantum should be large compared with the context-
switch time, it should not be too large. If the time quantum is too large, RR
scheduling degeneratesto FCFS policy. A rule of thumb is that 80 percent of the
CRU bursts should be shorter than the time quantum.

5.3.5 Multilevel Queue Scheduling

Another class of scheduling algorithms has been created for situations in
which processes are easily classified into different groups. For example, a
common division is made between foreground (interactive) processes and
background (batch) processes. These two types of processes have different
response-time requirements and so may have different scheduling needs. In-
addition, foreground processes may have priority (externally defined) over
background processes.

A multilevel queue scheduling algorithm partitions the ready queue into
several separate queues (Figure 5.6). The processes are permanently assigned to
one queue, generally based on some property of the process, such as memory
Size, process priority, or process type. Each queue has its own scheduling
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highest priority >

lowest priority

Figure 5.6 Multilevel queue scheduling.

algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Let's look at an example of a multilevel queue scheduling algorithm with
five queues, listed below in order of priority:

System processes
Interactive processes
Interactive editing processes
Batch processes

o > 0 DN -

Student processes

Each queue has absolute priority over lower-priority queues. No processin the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted.

Another possibility isto time-slice among the queues. Here, each queue gets
a certain portion of the CRU time, which it can then schedule among its various
processes. For instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CRU time for RR scheduling
among its processes, whereas the background queue receives 20 percent of the
CRU to give to its processes on an FOFS basis.
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5.3.6 Multilevel Feedback-Queue Scheduling *

Normally, when the multilevel queue scheduling algorithm is used, processes
are permanently assigned to a queue when they enter the system. If there
are separate queues for foreground and background processes, for example,
processes do not move from one queue to the other, since processes do not
change their foreground or background nature. This setup has the advantage
of low scheduling overhead, but it is inflexible.

The multilevel feedback-queue scheduling algorithm, in contrast, allows
aprocess to move between queues. Theideais to separate processes according
to the characteristics of their CRU bursts. If a process uses too much CPU time,
it will be moved to alower-priority queue. This scheme leaves1/0-bound and
interactive processes in the higher-priority queues. In addition, a process that
waits too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

For example, consider a multilevel feedback-queue scheduler with three
queues, numbered from O to 2 (Figure 5.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will only be executed if queues O
and 1 are empty. A process that arrives for queue 1 will preempt a process in
gueue 2. A process in queue 1 will in turn be preempted by a process arriving
for queue 0.

A process entering the ready queueis put in queue 0. A processin queue 0
is given atime quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue O is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis but are run only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CRU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish
its CPU burst, and go dff to its next 1/0 burst. Processes that need more than
8 but less than 24 milliseconds are also served quickly, although with lower
priority than shorter processes. Long processes automatically sink to queue
2 and are served in FCFS order with any CRU cycles left over from queues O
and 1.

Figure 5.7 Multilevel feedback queues.
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In general, a multilevel feedback-queue scheduler is defined by the
following parameters:

e The number of queues
» The scheduling algorithm for each queue

» The method used to determine when to upgrade a process to a higher-
priority gueue

» The method used to determine when to demote a process to a lower-
priority gueue

» Themethod used to determine which queue a processwill enter when that
process needs service

The definition of a multilevel feedback-queue scheduler makes it the most
general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for al the parameters.

Multiple-Processor Scheduling

Our discussion thus far has focused on the problems of scheduling the CRU in
a system with a single processor. If multiple CPUs are available, load sharing
becomes possible; however, the scheduling problem becomes correspondingly
more complex. Many possibilities have been tried; and as we saw with single-
processor CRU scheduling, there is no one best solution. Here, we discuss
several concerns in multiprocessor scheduling. We concentrate on systems
in which the processors are identical—homogeneous—in terms of their
functionality; we can then use any available processor to run any process
in the queue. (Note, however, that even with homogeneous multiprocessors,
there are sometimes limitations on scheduling. Consider a system with an 170
device attached to a private bus of one processor. Processes that wish to use
that device must be scheduled to run on that processor.)

5.4.1 Approaches to Multiple-Processor Scheduling

One approach to CAU scheduling in a multiprocessor system has al scheduling
decisions, [/O processing, and other system activities handled by a single
processor—the master server. The other processors execute only user code.
This asymmetric multiprocessing is simple because only one processor
accesses the system data structures, reducing the need for data sharing.

A second approach uses symmetric multiprocessing (SVIP), where each .
processor is self-scheduling. All processes may beinacommon ready queue, or
each processor may have its own private queue of ready processes. Regardless,
scheduling proceeds by having the scheduler for each processor examine the
ready queue and select a process to execute. As we shall see in Chapter 6,
if we have multiple processors trying to access and update a common data
structure, the scheduler must be programmed carefully: We must ensure that
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two processors do not choose the same process and that processes are n&t lost
from the queue. Virtually all modern operating systems support sMp, including
Windows xr, Windows 2000, Solaris, Linux, and Mac OS X.

In the remainder of this section, we will discuss issues concerning SVIP
systems.

5.4.2 Processor Affinity

Consider what happens to cache memory when a process has been running on
aspecific processor; The data most recently accessed by the process popul ates
the cache for the processor; and as a result, successive memory accesses by
the process are often satisfied in cache memory. Now consider what happens
if the process migrates to another processor: The contents of cache memory
must be invalidated for the processor being migrated from, and the cache for
the processor being migrated to must be re-populated. Because of the high
cost of invalidating and re-populating caches, most SVIP systems try to avoid
migration of processes from one processor to another and instead attempt to
keep a process running on the same processor. This is known as processor
affinity, meaning that a process has an affinity for the processor on which it is
currently running.

Processor affinity takes several forms. When an operating system has a
policy of attempting to keep a process running on the same processor —but
not guaranteeing that it will do so— we have a situation known as soft affinity.
Here, it is possible for a process to migrate between processors. Some systems
—such as Linux—also provide system calls that support hard affinity, thereby
allowing a process to specify that it is not to migrate to other processors.

5.4.3 Load Balancing

On SVIP systems, it is important to keep the workload balanced among dll
processors to fully utilize the benefits of having more than one processor.
Otherwise, one or more processors may sit idle while other processors have
high workloads along with lists of processes awaiting the CPU. Load balancing
attempts to keep the workload evenly distributed across all processors in
an SVIP system. It is important to note that load balancing is typically only
necessary on systemswhere each processor has its own private queue of eigible
processes to execute. On systems with a common run queue, load balancing
is often unnecessary, because once a processor becomes idle, it immediately
extracts a runnabl e process from the common run queue. It is also important to
note, however, that in most contemporary operating systems supporting SMP,
each processor does have a private queue of eligible processes.

There are two general approaches to load balancing: push migration and
pull migration. With push migration, a specific task periodically checks the
load on each processor and—ifit finds an imbalance—evenly distributes the
load by moving (or pushing) processes from overloaded to idle or less-busy
processors. Pull migration occurs when an idle processor pulls a waiting task
from a busy processor. Push and pull migration need not be mutually exclusive
and are in fact often implemented in parallel on load-balancing systems. For
example, the Linux scheduler (described in Section 5.6.3) and the ULE schedul er
available for FreeBSD systems implement both techniques. Linux runs its load-
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balancing algorithm every 200 milliseconds (push migration) or whenever the
run queue for a processor is empty (pull migration).

Interestingly, load balancing often counteracts the benefits of processor
affinity, discussed in Section 5.4.2. That is, the benefit of keeping a process
running on the same processor is that the process can take advantage of its
data being in that processor's cache memory. By either pulling or pushing a
process from one processor to another, we invalidate this benefit. Asis often the
case in systems engineering, there is no absolute rule concerning what policy
is best. Thus, in some systems, an idle processor always pulls a process from
a non-idle processor; and in other systems, processes are moved only if the
imbalance exceeds a certain threshold.

5.4.4 Symmetric Multithreading

VP systems alow several threads to run concurrently by providing multiple
physical processors. An alternative strategy is to provide multiple logical —
rather than physical—processors. Such a strategy is known as symmetric
multithreading (or SMT); it has also been termed hyperthreading technology
on Intel processors.

The idea behind SMT is to create multiple logical processors on the same
physical processor, presenting aview of several logical processors to the operat-
ing system, even on a systemwith only a single physical processor. Each logical
processor has its own ar chitecture state, which includes general-purpose and
machine-state registers. Furthermore, each logical processor is responsible for
its own interrupt handling, meaning that interrupts are delivered to—and
handled by —logical processors rather than physical ones. Otherwise, each
logical processor shares the resources of its physical processor, such as cache
memory and buses. Figure 5.8 illustrates a typical SVIT architecture with two
physical processors, each housing two logical processors. From the operating
system's perspective, four processors are available for work on this system.

It isimportant to recognize that VIT is a feature provided in hardware, not
software. That is, hardware must provide the representation of the architecture
state for each logical processor, as well as interrupt handling. Operating
systems need not necessarily be designed differently if they are to run on an
T system; however, certain performance gains are possible if the operating
system is aware that it is running on such a system. For example, consider a
system with two physical processors, both of which are idle. The scheduler
should firgt try scheduling separate threads on each physical processor rather

logical || logical: | fogical |-t logical-
CPY cPU

physical
GPU

system bus

Figure 5.8 A typical SMT architecture
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than on separate logical processors on the same physical processor. Otherwise,
both logical processors on one physical processor could be busy while the other
physical processor remained idle.

Thread Scheduling

In Chapter 4, we introduced threads to the process model, distinguishing
between user-level and kernel-level threads. On operating systems that support
them, it is kernel-level threads—not processes—that are being scheduled by
the operating system. User-level threads are managed by a thread library,
and the kernel is unaware of them. To run on a CPU, user-level threads
must ultimately be mapped to an associated kernel-level thread, although
this mapping may be indirect and may use a lightweight process (LWP). In this
section, we explore scheduling issues involving user-level and kernel-level
threads and offer specific examples of scheduling for Pthreads.

5.5.1 Contention Scope

One distinction between user-level and kernel-level threads lies in how they
are scheduled. On systems implementing the many-to-one (Section 4.2.1) and
many-to-many (Section 4.2.3) models, the thread library schedules user-level
threads to run on an available LWP, a scheme known as process-contention
scope (PCS), since competition for the CPU takes place among threads bel onging
to the same process. When we say the thread library schedules user threads onto
available LWPs we do not mean that the thread is actually running on a CPU;
this would require the operating system to schedule the kernel thread onto
a physical CPU. To decide which kernel thread to schedule onto a CRU, the
kernel uses system-contention scope (SCS). Competition for the CRU with SCS
scheduling takes place among all threads in the system. Systems using the
one-to-one model (such as Windows XP, Solaris 9, and Linux) schedule threads
using only SCS

Typically, PCS is done according to priority-——the scheduler selects the
runnable thread with the highest priority to run. User-level thread priorities
are set by the programmer and are not adjusted by the thread library, although
some thread libraries may alow the programmer to change the priority of
a thread. It is important to note that PCS will typically preempt the thread
currently running in favor of a higher-priority thread; however, there is no
guarantee of time slicing (Section 5.3.4) among threads of equal priority.

5.5.2 Pthread Scheduling
We provided a sample POSIX Pthread program in Section 4.3.1, along with an

introduction to thread creation with Pthreads. Now, we highlight the FOSX - -

Pthread AR that allows specifying either PCS or SCS during thread creation.
Pthreads identifies the following contention scope values:

e PTHREAD_SCOPE_PROCESS schedulesthreads using PCS scheduling.
* PTHREAD.SCOPE.SYSTEM schedules threads using SCS scheduling.
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On systems implementing the many-to-many model (Section 4.2.3), the
PTHREAD_SCOPE_PROCESS policy schedules user-level threads onto available
LWHPRs The number of Lwps is maintained by the thread library, perhaps using
scheduler activations (Section 4.4.6). The PTHREAD_SCOPE_SYSTEM scheduling
policy will create and bind an LWP for each user-level thread on many-to-many
systems, effectively mapping threads using the one-to-one policy (Section
42.2).

The Pthread IPC provides the following two functions for getting—and
setting—the contention scope policy:

* pthread attr_setscope(pthread attr t *attr, int scope)
» pthread.attr getscope(pthread attr_t *attr, int *scope)

The first parameter for both functions contains a pointer to the attribute set for
the thread. The second parameter for the pthread_attr_setscope O function
is passed either the PTHREAD.SCOPESYSTEM Of PTHREAD SCOPE_PROCESS
value, indicating how the contention scope is to be set. In the case of
pthread attr_getscope (), this second parameter contains a pointer to an
int value that is set to the current value of the contention scope. If an error
occurs, each of these functions returns non-zero values.

In Figure 5.9, we illustrate a Pthread program that first determines the
existing contention scope and sets it to PTHREAD _SCOPE_PROCESS. It then creates
five separate threads that will run using the SCS scheduling policy. Note that on
some systems, only certain contention scope values are allowed. For example,
Linux and Mac OS X systems allow only PTHREAD SCOPE_SYSTEM.

Operating System Examples

We turn next to a description of the scheduling policies of the Solaris, Windows
XP, and Linux operating systems. It is important to remember that we are
describing the scheduling of kernel threads with Solaris and Linux. Recall that
Linux does not distinguish between processes and threads; thus, we use the
term task when discussing the Linux scheduler.

5.6.1 Example: Solaris Scheduling

Solaris uses priority-based thread scheduling. It has defined four classes of
scheduling, which are, in order of priority:

Red time

System

Time sharing

NSNS

Interactive

Within each class there are different priorities and different scheduling algo-
rithms. Solaris scheduling is illustrated in Figure 5.10.
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#include <pthread.h>

#incliude <stdio.h>
#define NUM_THREADS 5

int main{int argc, char *argv[])

{

/*

int i, scope;
pthread_t tid [NUM_THREADS];
pthread attr_ t attr;

/* get the default attributes */
pthread_attr_init (&attr);

/* first inquire on the current scope */
if (pthread.attr_.getscope(&attr, &scope) != 0)
fprintf (stderr, "Unable to get scheduling scope\n");
el se {
if (scope == PTHREAD_SCOPE_PROCESS)
printf( "PTHREAD_SCOPE_PROCESS") ;
else if (scope == PTHREAD_SCOPE_SYSTEM)
printf ( "PTHREAD_SCOPE SYSTEM");
el se
fprintf (stderxr, "Illegal scope value.\n");
}

/* set the scheduling algorithmto PCS or SCS */
pthread attr_setscope (&attr, PTHREAD SCOPE.SYSTEM) ;

/* create the threads */
for (i = 0; i < NUM.THREADS; i++)
pthread create (&tidi] , &attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM.THREADS; i ++)
pthread.join(tid[i] , NULL);

Each thread will begin control in this function */

voi d *runner (void *param)

{

/* do some work ... */

Dt hread_exit {0);

Figure 5.9 Pthread scheduling API.
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Figure 5.10 Solaris scheduling.

The default scheduling class for a process is time sharing. The scheduling
policy for time sharing dynamically alters priorities and assigns time slices
of different lengths using a multilevel feedback queue. By default, there is
an inverse relationship between priorities and time dices: The higher the
priority, the smaller the time dlice; and the lower the priority, the larger the
time dice. Interactive processes typically have a higher priority; CPU-bound
processes, a lower priority. This scheduling policy gives good response time
for interactive processes and good throughput for CPU-bound processes. The
interactive class uses the same scheduling policy as the time-sharing class, but
it gives windowing applications a higher priority for better performance.

Figure 5.11 shows the dispatch table for scheduling interactive and time-
sharing threads. These two scheduling classes include 60 priority levels, but
for brevity, we display only a handful. The dispatch table shown in Figure 5.11
contains the following fields: .

» Priority. The class-dependent priority for the time-sharing and interactive
classes. A higher number indicates a higher priority.

* Time quantum. The time quantum for the associated priority. This
illustrates the inverse relationship between priorities and time quanta
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Figure 5.11 Solaris dispatch table for interactive and time-sharing threads.

The lowest priority (priority 0) has the highest time quantum (200
milliseconds), and the highest priority (priority 59) has the lowest time
guantum (20 milliseconds).

* Time quantum expired. The new priority of a thread that has used
its entire time quantum without blocking. Such threads are considered
CPU-intensive. As shown in the table, these threads have their priorities
lowered.

& Return from sleep. The priority of athread that is returning from sleeping
(such as waiting for 1/0). As the table illustrates, when 1/0 is available
for a waiting thread, its priority is boosted to between 50 and 59, thus
supporting the scheduling policy of providing good response time for
interactive processes.

Solaris 9 introduced two new scheduling classes: fixed priority and fair
share. Threads in the fixed-priority class have the same priority range as
those in the time-sharing class; however, their priorities are not dynamically
adjusted. The fair-share scheduling class uses CPU shares instead of priorities
to make scheduling decisions. CPU shares indicate entitlement to available CRU
resources and are allocated to a set of processes (known as a pr oj ect).

Solaris uses the system class to run kernel processes, such as the scheduler
and paging daemon. Once established, the priority of a system process does
not change. The system class is reserved for kernel use (user processes running
in kernel mode are not in the systems class).
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Threadsin the real-time class are given the highest priority. This assigament
allows a real-time process to have a guaranteed response from the system
within a bounded period of time. A real-time process will run before a process
in any other class. In general, however, few processes belong to the real-time
class.

Each scheduling class includes a set of priorities. However, the scheduler
converts the class-specific priorities into global priorities and selects the thread
with the highest global priority to run. The selected thread runs on the CRU
until it (1) blocks, (2) usesits time dlice, or (3) is preempted by a higher-priority
thread. If there are multiple threads with the same priority, the scheduler uses
a round-robin queue. As mentioned, Solaris has traditionally used the many-
to-many model (4.2.3) but with Solaris 9 switched to the one-to-one model
(4.2.2).

5.6.2 Example: Windows XP Scheduling

Windows XP schedul es threads using a priority-based, preemptive scheduling
algorithm. The Windows X P scheduler ensures that the highest-priority thread
will alwaysrun. The portion of the Windows XP kernel that handl es scheduling
is called the dispatcher. Athread selected to run by the dispatcher will run until
it is preempted by a higher-priority thread, until it terminates, until its time
quantum ends, or until it calls a blocking system call, such as for 1/0. If a
higher-priority real-time thread becomes ready while a lower-priority thread
isrunning, the lower-priority thread will be preempted. This preemption gives
a real-time thread preferential access to the CPU when the thread needs such
access.

The dispatcher uses a 32-level priority scheme to determine the order of
thread execution. Priorities are divided into two classes. The variable class
contains threads having prioritiesfrom 1 to 15, and the r eal-time class contains
threads with prioritiesranging from 16 to 31. (Thereisalso athread running at
priority O that is used for memory management.) The dispatcher uses a queue
for each scheduling priority and traverses the set of queues from highest to
lowest until it finds a thread that is ready to run. If no ready thread is found,
the dispatcher will execute a special thread called the idle thread.

There is a relationship between the numeric priorities of the Windows XP
kernel and the Win32 AP. The Win32 AR identifies several priority classes to
which a process can belong. These include:

e REALTIME_PRIORITY CLASS

s HIGH-PRIORITY-CLASS

* ABOVE NORMAL _PRIORITY CLASS

* NORMAL-PRIORITY-CLASS

e BELOW_NORMAL PRIORITY_CLASS

* IDLEPRIORITY-CLASS

Priorities in al classes except the REALTIMEPRIORITY-CLASS are variable,

meaning that the priority of a thread belonging to one of these classes can
change.
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Figure 5.12 Windows XP priorities.

Within each of the priority classes is a relative priority. The values for
relative priority include:

e TIME_CRITICAL

e HIGHEST

« ABOVE-NORMAL
« NORMAL

« BELOW-NORMAL
e LOWEST

« IDLE

The priority of each thread is based on the priority class it belongs to and its
relative priority within that class. Thisrelationship is shown in Figure 5.12. The
values of the priority classes appear in the top row. Theleft column contains the
values for the relative priorities. For example, if the relative priority of athread
in the ABOVE.NORMAL_PRIORITY_CLASS is NORMAL, the numeric priority of
that thread is 10.

Furthermore, each thread has a base priority representing a value in the
priority range for the class the thread belongs to. By default, the base priority
is the value of the NORMAL relative priority for that specific class. The base
priorities for each priority class are:

« REALTIME_PRIORITY CLASS—24

+  HIGH PRIORITY.CLASS—13

«  ABOVE-NORMAL_PRIORITY_CLASS—10
« NORMAL_PRIORITY_.CLASS5—S§

+ BELOW_NORMAL PRIORITY CLASS—6
* IDLE_PRIORITY_CLASS—4
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Processes are typically members of the NORMAL .PRIORITY_CLASS. A pro-
cess will belong to this class unless the parent of the process was of the
IDLE.PRIORITY CLASS or unless another class was specified when the process
was created. The initial priority of a thread is typically the base priority of the
process the thread belongs to.

When a thread's time quantum runs out, that thread is interrupted; if the
thread is in the variable-priority class, its priority is lowered. The priority
is never lowered below the base priority, however. Lowering the thread's
priority tends to limit the CRU consumption of compute-bound threads. When a
variable-priority thread is released from await operation, the dispatcher boosts
the priority. The amount of the boost depends on what the thread was waiting
for; for example, a thread that was waiting for keyboard 1/0 would get alarge
increase, whereas a thread waiting for a disk operation would get a moderate
one. This strategy tendsto give good response times to interactive threads that
are using the mouse and windows. It also enables I/O-bound threads to keep
the 1/0 devices busy while permitting compute-bound threads to use spare
CPU cycles in the background. This strategy is used by several time-sharing
operating systems, including UNIX. In addition, the window with which the
user is currently interacting receives a priority boost to enhance its response
time.

When a user is running an interactive program, the system needs to provide
especially good performance for that process. For this reason, Windows XP
has a special scheduling rule for processes in the NORMAL PRIORITY_CLASS.
Windows XP distinguishes between the foreground process that is currently
selected on the screen and the background processes that are not currently
selected. When aprocess movesinto the foreground, Windows XPincreases the
scheduling quantum by some factor-—typically by 3. This increase gives the
foreground process three times longer to run before a time-sharing preemption
occurs.

5.6.3 Example: Linux Scheduling

Prior to version 2.5, the Linux kernel ran a variation of the traditional UNIX
scheduling algorithm. Two problems with the traditional UNIX scheduler are
that it does not provide adequate support for SMP systems and that it does
not scale well as the number of tasks on the system grows. With version 2.5,
the scheduler was overhauled, and the kernel now provides a scheduling
algorithm that runs in constant time—known as O(1)—regardless of the
number of tasks on the system. The new scheduler also provides increased
support for SMP, including processor affinity and load balancing, as well as
providing fairness and support for interactive tasks.

The Linux scheduler is a preemptive, priority-based algorithm with two
separate priority ranges: areal-timerange from 0 to 99 and anice value ranging
from 100 to 140. These two ranges map into a global priority scheme whereby
numerically lower values indicate higher priorities.

Unlike schedulers for many other systems, including Solaris (5.6.1) and
Windows XP (5.6.2), Linux assigns higher-priority tasks longer time quanta and
lower-priority tasks shorter time quanta. The relationship between priorities
and time-dlice length is shown in Figure 5.13.
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numeric relative time
priority priority quantum
0 highest 200 ms
99
100
* other
ft tasks
140 lowest 10 ms

Figure 5.13 The relationship between priorities and time-slice length.

A runnable task is considered eligible for execution on the CPU as long
as it has time remaining in its time siice. When a task has exhausted its time
dice, it is considered expired and is not eligible for execution again until al
other tasks have also exhausted their time quanta. The kernel maintains a list
of al runnable tasks in a runqueue data structure. Because of its support for
SMP, each processor maintains its own runqueue and schedules itself indepen-
dently. Each runqueue contains two priority arrays—active and expired. The
active array contains al tasks with time remaining in their time dlices, and the
expired array contains all expired tasks. Each of these priority arrays contains a
list of tasks indexed according to priority (Figure 5.14). The scheduler chooses
the task with the highest priority from the active array for execution on the
CPU. On multiprocessor machines, this means that each processor is scheduling
the highest-priority task from its own runqueue structure. When al tasks have
exhausted their time dlices (that is, the active array is empty), the two priority
arrays are exchanged; the expired array becomes the active array, and vice
versa.

Linux implements real-time scheduling as defined by rOsix.1b, which is
fully described in Section 5.5.2. Real-time tasks are assigned static priorities.
All other tasks have dynamic priorities that are based on their nice values plus
or minus the value 5. The interactivity of atask determines whether the value
5 will be added to or subtracted from the nice value. A task's interactivity
is determined by how long it has been sleeping while waiting for 1/0. Tasks

active expired
array array
priority task lists priority task lists
[0] o—0 [0] o—o—0
[1] o—0—0 [1] ©
. . . .
. . [ «
[140] o [140] o—0

Figure 5.14 List of tasks indexed according to priority.
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that are more interactive typically have longer sleep times and therefore are
more likely to have adjustments closer to -5, as the scheduler favors interactive
tasks. The result of such adjustments will be higher priorities for these tasks.
Conversely, tasks with shorter sleep times are often more CPU-bound and thus
will have their priorities lowered.

The recalculation of a task's dynamic priority occurs when the task has
exhausted its time quantum and is to be moved to the expired array. Thus,
when the two arrays are exchanged, all tasksin the new active array have been
assigned new priorities and corresponding time slices.

Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system? As we
saw in Section 5.3, there are many scheduling algorithms, each with its own
parameters. As aresult, selecting an algorithm can be difficult.

Thefirst problem is defining the criteria to be used in selecting an algorithm.
As we saw in Section 5.2, criteria are often defined in terms of CPU utilization,
response time, or throughput. To select an algorithm, we must first define
the relative importance of these measures. Our criteria may include several
measures, such as:

* Maximizing CRU utilization under the constraint that the maximum
responsetimeis 1 second

* Maximizing throughput such that turnaround time is (on average) linearly
proportional to total execution time

Once the selection criteria have been defined, we want to evaluate the
algorithms under consideration. We next describe the various evaluation
methods we can use.

5.7.1 Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic
evaluation uses the given algorithm and the system workload to produce a
formula or number that evaluates the performance of the algorithm for that
workload.

One type of analytic evaluation is deterministic modeling. This method
takes a particular predetermined workload and defines the performance of each
algorithm for that workload. For example, assume that we have the workload
shown below. All five processes arrive at time 0O, in the order given, with the
length of the CPU burst given in milliseconds:

Process Burst Time

P 10
Py 29
P 3
Pi 7
P 12
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Consider the FCFS SF, and RR (quantum = 10 milliseconds) scheduling
algorithms for this set of processes. Which algorithm would give the minimum
average waiting time?

For the FCFS algorithm, we would execute the processes as

Pl Pz P3 P4 P5

¢ 10 39 42 49 61

The waiting time is O milliseconds for process P;, 10 milliseconds for process
P>, 39 milliseconds for process P3, 42 milliseconds for process P4, and 49
milliseconds for process Ps. Thus, the average waiting time is (0 + 10 + 39
+ 42 + 49) /5= 28 milliseconds.

With nonpreemptive SF scheduling, we execute the processes as

P3| P4 P Ps P3

0 3 10 20 32 61

The waiting timeis 10 milliseconds for process P\, 32 milliseconds for process
P>, 0 milliseconds for process P3, 3 milliseconds for process P4, and 20
milliseconds for process P5. Thus, the average waiting time is (10 + 32 + 0
+ 3 +20)/5 = 13 milliseconds.

With the RR algorithm, we execute the processes as

Py Py Pyl P4 Ps P2 Ps Py

0 10 20 23 30 40 50 52 61

The waiting time is 0 milliseconds for process P;, 32 milliseconds for process
P,, 20 milliseconds for process 5, 23 milliseconds for process P4, and 40
milliseconds for process P5. Thus, the average waiting time is (0 + 32 + 20
+ 23 + 40)/5 = 23 milliseconds.

We see that, in this case, the average waiting time obtained with the SF
policy is less than half that obtained with FCFS scheduling; the RR algorithm
gives us an intermediate val ue.

Deterministic modeling is simple and fast. It gives us exact numbers,
allowing us to compare the algorithms. However, it requires exact numbers for
input, and its answers apply only to those cases. The main uses of deterministic
modeling are in describing scheduling algorithms and providing examples. In

cases where we are running the same program over and over again and can . .

measure the program's processing requirements exactly, we may be able to use
deterministic modeling to select a scheduling algorithm. Furthermore, over a
set of examples, deterministic modeling may indicate trends that can then be
analyzed and proved separately. For example, it can be shown that, for the
environment described (all processes and their times available at time 0), the
SF policy will always result in the minimum waiting time.
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5.7.2 Queueing Models :

On many systems, the processes that are run vary from day to day, so there
is no static set of processes (or times) to use for deterministic modeling. What
can be determined, however, is the distribution of CRU and 1/0 bursts. These
distributions can be measured and then approximated or simply estimated. The
result is a mathematical formula describing the probability of a particular CRU
burst. Commonly, this distribution is exponential and is described by its mean.
Similarly, we can describe the distribution of times when processes arrive in
the system (the arrival-time distribution). From these two distributions, it is
possible to compute the average throughput, utilization, waiting time, and so
on for most algorithms.

The computer system is described as a network of servers. Each server has
a queue of waiting processes. The CFU is a server with its ready queue, asis
the 1/0 system with its device queues. Knowing arrival rates and service rates,
we can compute utilization, average queue length, average wait time, and so
on. This area of study is called queueing-network analysis.

As an example, let n be the average queue length (excluding the process
being serviced), let W be the average waiting time in the queue, and let X be
the average arrival rate for new processes in the queue (such as three processes
per second). We expect that during the time W that a process waits, x x W
new processes will arrive in the queue. If the system isin a steady state, then
the number of processes leaving the queue must be equal to the number of
processes that arrive. Thus,

n=hx W.

This equation, known as Little's formula, is particularly useful because it is
valid for any scheduling algorithm and arrival distribution.

We can use Little's formula to compute one of the three variables, if we
know the other two. For example, if we know that 7 processes arrive every
second (on average), and that there are normally 14 processes in the queue,
then we can compute the average waiting time per process as 2 seconds.

Queueing analysis can be useful in comparing scheduling algorithms,
but it also has limitations. At the moment, the classes of algorithms and
distributions that can be handled are fairly limited. The mathematics of
complicated algorithms and distributions can be difficult to work with. Thus,
arrival and service distributions are often defined in mathematically tractable
—but unrealistic—ways. It is also generally necessary to make a number of
independent assumptions, which may not be accurate. As a result of these
difficulties, queueing models are often only approximations of real systems,
and the accuracy of the computed results may be questionable.

5.7.3 Simulations

To get a more accurate evaluation of scheduling algorithms, we can use
simulations. Running simulations involves programming a model of the
computer system. Software data structures represent the major components
of the system. The simulator has a variable representing a clock; as this
variable's value is increased, the simulator modifies the system state to reflect
the activities of the devices, the processes, and the scheduler. As the simulation
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Figure 5.15 Evaluation of CPU schedulers by simulation.

executes, statistics that indicate algorithm performance are gathered and
printed.

The datato drive the simulation can be generated in several ways. The most
common method uses a random-number generator, which is programmed to
generate processes, CFU burst times, arrivals, departures, and so on, according
to probability distributions. The distributions can be defined mathematically
(uniform, exponential, Poisson) or empirically. If adistribution isto be defined
empirically, measurements of the actual system under study are taken. The
results define the distribution of eventsin the real system; this distribution can
then be used to drive the simulation.

A distribution-driven simulation may be inaccurate, however, because of
relationships between successive events in the real system. The frequency
distribution indicates only how many instances of each event occur; it does not
indicate anything about the order of their occurrence. To correct this problem,
we can use trace tapes. We create atrace tape by monitoring the real system and
recording the sequence of actual events (Figure 5.15). We then use this sequence
to drive the simulation. Trace tapes provide an excellent way to compare two
algorithms on exactly the same set of real inputs. This method can produce
accurate results for its inputs.

Simulations can be expensive, often requiring hours of computer time. A
more detailed simulation provides more accurate results, but it also requires
more computer time. In addition, trace tapes can require large amounts of
storage space. Finally, the design, coding, and debugging of the simulator can
be a major task.

5.7.4 Implementation

Even a simulation is of limited accuracy. The only completely accurate way
to evaluate a scheduling algorithm is to code it up, put it in the operating
system, and see how it works. This approach puts the actual algorithm in the
real system for evaluation under real operating conditions.
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The major difficulty with this approach is the high cost. The expense is
incurred not only in coding the algorithm and modifying the operating system
to support it (along with its required data structures) but also in the reaction
of the users to a constantly changing operating system. Most users are not
interested in building a better operating system; they merely want to get their
processes executed and use their results. A constantly changing operating
system does not help the users to get their work done.

Another difficulty is that the environment in which the algorithm is used
will change. The environment will change not only in the usual way, as new
programs are written and the types of problems change, but also as a result
of the performance of the scheduler. If short processes are given priority, then
users may break larger processes into sets of smaller processes. If interactive
processes are given priority over noninferactive processes, then users may
switch to interactive use.

For example, researchers designed one system that classified interactive
and noninteractive processes automatically by looking at the amount of
terminal 1/0. If a process did not input or output to the terminal in a 1-second
interval, the process was classified as noninteractive and was moved to a
lower-priority queue. In response to this policy, one programmer modified his
programs to write an arbitrary character to the terminal at regular intervals of
lessthan 1 second. The system gave his programs a high priority, even though
the terminal output was completely meaningless.

The most flexible scheduling algorithms are those that can be altered
by the system managers or by the users so that they can be tuned for
a specific application or set of applications. For instance, a workstation
that performs high-end graphical applications may have scheduling needs
different from those of a web server or file server. Some operating systems—
particularly severa versions of UNIX—allow the system manager to fine-tune
the scheduling parameters for a particular system configuration. For example,
Solaris provides the dispadmin command to alow the system administrator
to modify the parameters of the scheduling classes described in Section 5.6.1.

Another approach is to use APIs that modify the priority of a process or
thread. The Java, /POSIX, and /WinAPI/ provide such functions. The downfall
of this approach is that performance tuning a system or application most often
does not result in improved performance in more general situations.

Summary

CPU scheduling is the task of selecting a waiting process from the ready queue
and allocating the CPU to it. The CPU is allocated to the selected process by the
dispatcher.

First-come, first-served (FCFS scheduling is the simplest scheduling algo-
rithm, but it can cause short processes to wait for very long processes. Shortest-
job-first (SF scheduling is provably optimal, providing the shortest average
waiting time. Implementing SF scheduling is difficult, however, because pre-
dicting the length of the next CPU burst is difficult. The SF algorithm is a special
case of the general priority scheduling algorithm, which simply allocates the
CPU to the highest-priority process. Both priority and SF scheduling may suffer
from starvation. Aging is a technique to prevent starvation.
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Round-robin (RR) scheduling is more appropriate for a time-shared (inter-
active) system. RR scheduling allocates the CRU to thefirst process in the ready
gueue for q time units, where ¢ is the time quantum. After q time units, if
the process has not relinquished the CPU, it is preempted, and the process is
put at the tail of the ready queue. The major problem is the selection of the
time quantum. If the quantum is too large, RR scheduling degenerates to FCFS
scheduling; if the quantum is too small, scheduling overhead in the form of
context-switch time becomes excessive.

The FCFS algorithm isnonpreemptive; the RR algorithmis preemptive. The
SF and priority algorithms may be either preemptive or nonpreemptive.

Multilevel queue algorithms alow different algorithms to be used for
different classes of processes. The most common model includes a foreground
interactive queue that uses RR scheduling and a background batch queue that
vises FCFS scheduling. Multilevel feedback queues allow processes to move
from one queue to another.

Many contemporary computer systems support multiple processors and
allow each processor to schedul e itself independently. Typically, each processor
maintains its own private queue of processes (or threads), al of which are
available to run. Issues related to multiprocessor scheduling include processor
affinity and load balancing.

Operating systems supporting threads at the kernel level must schedule
threads—not processes—for execution. This is the case with Solaris and
Windows XP. Both of these systems schedule threads using preemptive,
priority-based scheduling algorithms, including support for real-time threads.
The Linux process scheduler uses a priority-based algorithm with real-time
support as well. The scheduling algorithms for these three operating systems
typically favor interactive over batch and CPU-bound processes.

The wide variety of scheduling algorithms demands that we have methods
to select among algorithms. Analytic methods use mathematical analysis to
determine the performance of an algorithm. Simulation methods determine
performance by imitating the scheduling algorithm on a "representative"
sample of processes and computing the resulting performance. However, sim-
ulation can at best provide an approximation of actual system performance;
the only reliable technique for evaluating a scheduling algorithm is to imple-
ment the algorithm on an actual system and monitor its performance in a
"real-world" environment.

Exercises

51 Whyisitimportant for the scheduler to distinguish 1/0-bound programs
from CPU-bound programs?

52 Discuss how the following pairs of scheduling criteria conflict in certain -
settings.

a. CPU utilization and response time
b. Average turnaround time and maximum waiting time
c. I/Odeviceutilization and CPU utilization <
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53 Consider the exponential average formula used to predict the length of
the next CRU burst. What are the implications of assigning the following
values to the parameters used by the algorithm?

a a—= 0and Ty = 100 milliseconds

b. =099 and 7 = 10 milliseconds

54 Consider the following set of processes, with the length of the CRU burst
given in milliseconds:

Process Burst Time  Priority

P, 10 3
P 1 1
P 2 3
P, 1 4
Ps 5 2

The processes are assumed to have arrived in the order Py, P, P3, P4, P5,
al at time 0.

a

Draw four Gantt charts that illustrate the execution of these
processes using the following scheduling algorithms: FCFS SF,
nonpreemptive priority (a smaller priority number implies a
higher priority), and RR (quantum = 1).

What is the turnaround time of each process for each of the
scheduling algorithms in part a?

What is the waiting time of each process for each of the scheduling
algorithms in part a?

Which of the algorithms in part a results in the minimum average
waiting time (over al processes)?

55 Which of the following scheduling algorithms could result in starvation?

a
b.

C.

d.

First-come, first-served
Shortest job first
Round robin

Priority

56 Consider avariant of the RR scheduling algorithm in which the entries
in the ready queue are pointers to the PCBs.

a. What would be the effect of putting two pointers to the same

b.

C.

process in the ready queue?

What would be two major advantages and two disadvantages of
this scheme?

How would you modify the basic RR algorithm to achieve the
same effect without the duplicate pointers?



Chapter 5 CPU Scheduling

57

58

59

510

511

512

Consider a system running ten 1/0-bound tasks and one CPU-bound
task. Assume that the 1/0-bound tasks issue an 1/0 operation once for
every millisecond of CRU computing and that each 1/O operation takes
10 milliseconds to complete. Also assume that the context-switching
overhead is 0.1 millisecond and that all processes are long-running tasks.
What is the CPU utilization for a round-robin scheduler when:

a. Thetime quantum is 1 millisecond

b. Thetime quantum is 10 milliseconds

Consider a system implementing multilevel queue scheduling. What
strategy can a computer user employ to maximize the amount of CRU
time allocated to the user's process?

Consider a preemptive priority scheduling algorithm based on dynami-
cally changing priorities. Larger priority numbers imply higher priority.
When a process is waiting for the CPU (in the ready queue, but not
running), its priority changes at a rate a; when it is running, its priority
changes at a rate (3. All processes are given a priority of O when they
enter the ready queue. The parameters a and 3 can be set to give many
different scheduling algorithms.

a What isthe algorithm that resultsfrom (3 > « > 0?
b. What isthe algorithm that results from e < pi < 0?

Explain the differences in the degree to which the following scheduling
algorithms discriminate in favor of short processes:

a FCFS
b. R
c. Multilevel feedback queues

Using the Windows XP scheduling algorithm, what is the numeric
priority of athread for the following scenarios?

a. A thread in the REALTIME PRIORITY.CLASS with arelative priority

of HIGHEST

b. A thread in the NORMAL PRIORITY CLASS with arelative priority
of NORMAL

c. A thread in the HIGH_PRIORITY_CLASS with arelative priority of
ABOVE NORMAL

Consider the scheduling algorithm in the Solaris operating system for
time-sharing threads.

a. What is the time quantum (in milliseconds) for a thread with
priority 10? With priority 55?

b. Assume that a thread with priority 35 has used its entire time
quantum without blocking. What new priority will the scheduler
assign this thread?
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c. Assume that a thread with priority 35 blocks for 1/0O before its
time quantum has expired. What new priority will the scheduler
assign this thread?

513 The traditional UNIX scheduler enforces an inverse relationship between
priority numbers and priorities: The higher the number, the lower the
priority. The scheduler recalculates process priorities once per second
using the following function:

Priority = (recent CPU usage / 2) + base

where base = 60 and recent CPU usage refers to a value indicating how
often a process has used the CPU since priorities were last recal culated.

Assume that recent CRU usage for process P, is 40, process P; is 18,
and process P; is 10. What will be the new priorities for these three
processes when priorities are recalculated? Based on this information,
does the traditional UNIX scheduler raise or lower the relative priority
of a CPU-bound process?
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A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes can either directly share a
logical address space (that is, both code and data) or be allowed to share data
only through files or messages. The former case is achieved through the use of
lightweight processes or threads, which we discussed in Chapter 4. Concurrent
access to shared data may result in data inconsistency. In this chapter, we
discuss various mechanisms to ensure the orderly execution of cooperating
processes that share a logical address space, so that data consistency is
maintained.

CHAPTER OBJECTIVES

» To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data.

» To present both software and hardware solutions of the critical-section
problem.

» To intoduce the concept of atomic transaction and describe mechanisms
to ensure atomicity.

Background

In Chapter 3, we developed a model of a system consisting of cooperating
sequential processes or threads, al running asynchronously and possibly
sharing data. We illustrated this model with the producer—consumer problem,
which is representative of operating systems. Specifically, in Section 3.4.1, we
described how a bounded buffer could be used to enable processes to share
memory.

Let us return to our consideration of the bounded buffer. As we pointed
out, our solution allows at most BUFFER.SIZE - 1 items in the buffer at the same
time. Suppose we want to modify the algorithm to remedy this deficiency. One
possibility is to add an integer variable counter, initialized to 0. counter is
incremented every time we add a new item to the buffer and is decremented

191
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every time we remove one item from the buffer. The code for the producer
process can be modified as follows:

while (true)
{
/* produce an itemin nextProduced */
while (counter == BUFFER. SIZE)
/* do nothing */
buffer[in] = next Produced;
in= (in + 1) % BUFFER.SIZE;
count er ++;

h
The code for the consumer process can be modified as follows:

while (true)
{
while (counter == 0)
; /* do nothing */
nextConsumed = buffer[out] ;
out = (out + 1) % BUFFER_SIZE;
counter--;
/* consume the item in nextConsumed */

}

Although both the producer and consumer routines are correct separately,
they may not function correctly when executed concurrently. Asanillustration,
suppose that the value of the variable counter is currently 5 and that the
producer and consumer processes execute the statements “counter++” and
“counter--" concurrently. Following the execution of these two statements,
the value of the variable counter may be 4, 5, or 6! The only correct result,
though, is counter == 5, which is generated correctly if the producer and
consumer execute separately.

We can show that the value of counter may be incorrect as follows. Note
that the statement " counter++" may be implemented in machine language (on
atypical machine) as

register; = counter
registery =registery +1
counter - registeri

whereregister; isaloca CRU register. Smilarly, the statement “counter--"is
implemented as follows.

register; = counter
register, =register, —1
counter = registeri

where again register, is a locd CRU register. Even though register; and
register, may be the same physical register (an accumulator, say), remember



6.2

6.2 The Critical-Section Problem 193

that the contents of this register will be saved and restored by the intgrrupt
handler (Section 1.2.3).

The concurrent execution of “counter++" and “counter--"1is equivalent
to a sequential execution where the lower-level statements presented pre-
viously are interleaved in some arbitrary order (but the order within each
high-level statement is preserved). One such interleaving is

Tp: producer execute registeri — counter {register, = 5}
T;: producer execute register, =registery + 1 {register;= 6}
Tr. consumer execute register, = counter {register2 =5}
T;: consumer execute register;= registeri— 1 {register,=A4}
T;: producer execute counter = registeri {counter = 6}
T=: consumer execute counter = registers {counter = 4}

Notice that we have arrived at the incorrect state "counter == 4", indicating
that four buffers are full, when, in fact, five buffers are full. If we reversed the
order of the statements at T, and Tz, we would arrive at the incorrect state
"counter———=6".

We would arrive at thisincorrect state because we allowed both processes
to manipulate the variable counter concurrently. A situation like this, where
several processes access and manipulate the same data concurrently and the
outcome of the execution depends on the particular order in which the access
takes place, is caled a race condition. To guard against the race condition
above, we need to ensure that only one process at a time can be manipulating
thevariable counter. To make such aguarantee, we require that the processes
be synchronized in some way.

Situations such as the one just described occur frequently in operating
systems as different parts of the system manipulate resources. Clearly, we
want the resulting changes not to interfere with one another. Because of the
importance of this issue, a mgor portion of this chapter is concerned with
process synchronization and coor dination.

The Critical-Section Problem

Consider a system consisting of n processes {Py, P4, ..., P,.1}. Each process
has a segment of code, caled a critical section, in which the process may
be changing common variables, updating a table, writing a file, and so on.
The important feature of the system is that, when one process is executing in
its critical section, no other process is to be allowed to execute in its critical
section. That is, no two processes are executing in their critical sections at the
same time. The critical-section problemisto design a protocol that the processes
can use to cooperate. Each process must request permission to enter its critical |
section. The section of code implementing this request is the entry section. The
critical section may be followed by an exit section. The remaining code is the
remainder section. The general structure of a typical process P; is shown in
Figure 6.1. The entry section and exit section are enclosed in boxes to highlight
these important segments of code.
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do{ ’

1 entry section]

critical section

remainder section
} while (TRUE);
Figure61 Genead dructure of atypica processF.

A solution to the critical-section problem must satisfy the following three
requirements:

1. Mutual exclusion. If process P; isexecuting in itscritical section, then no
other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some
processes wish to enter their critical sections, then only those processes
that are not executing in their remainder sections can participate in the
decision on which will enter its critical section next, and this selection
cannot be postponed indefinitely.

3. Bounded waiting. There exists abound, or limit, on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

We assume that each process is executing at a nonzero speed. However, we can
make no assumption concerning the relative speed of the n processes.

At agiven point in time, many kernel-mode processes may be active in the
operating system. As a result, the code implementing an operating system
(kernel code) is subject to several possible race conditions. Consider as an
example a kernel data structure that maintains a list of all open files in the
system. This list must be modified when a new file is opened or closed (adding
thefile to the list or removing it from thelist). If two processeswere to open files
simultaneously, the separate updates to thislist could result in arace condition.
Other kernel data structures that are prone to possible race conditions include
structures for maintaining memory allocation, for maintaining process lists,
and for interrupt handling. It is up to kernel developers to ensure that the
operating system is free from such race conditions.

Two general approaches are used to handle critical sections in operating
systems: (1) preemptivekernelsand (2) nonpreemptivekernels. A preemptive
kernel allows a process to be preempted while it is running in kernel mode.
A nonpreemptive kernel does not allow a process running in kernel mode
to be preempted; a kernel-mode process will run until it exits kernel mode,
blocks, or voluntarily yields control of the CPU. Obviously, a nonpreemptive
kernel is essentially free from race conditions on kernel data structures, as



6.3

63 Peterson's Solution 1%

only one process is active in the kernel a a time. We cannot say the:same
about nonpreemptive kernels, so they must be carefully designed to ensure
that shared kernel data are free from race conditions. Preemptive kernels are
especidly difficult to design for SMIP architectures, since in these environments
it is possible for two kernel-mode processes to run ssimultaneoudy on different
processors.

Why, then, would anyone favor a preemptive kernel over anonpreemptive
one? A preemptive kernel ismore suitable for real-time programming, asit will
alow areal-time process to preempt a process currently running in the kernel.
Furthermore, a preemptive kernel may be more responsive, since thereis less
risk that a kernel-mode process will run for an arbitrarily long period before
relinquishing the processor to waiting processes. Of course, this effect can be
minimized by designing kerndl code that does not behave in this way.

Windows XP and Windows 2000 are nonpreemptive kernels, as is the
traditional UNIX kernel. Prior to Linux 2.6, the Linux kernel was nonpreemptive
as well. However, with the release of the 26 kerndl, Linux changed to the
preemptive model. Severd commercia versions of UNIX are preemptive,
including Solaris and IRIX.

Peterson's Solution

Next, we illustrate a classc software-based solution to the critical-section
problem known as Peter son's solution. Because of the way modern computer
architectures perform basic machine-language instructions, such as load and
store, there are no guarantees that Peterson's solution will work correctly
on such architectures. However, we present the solution because it provides
a good algorithmic description of solving the critica-section problem and
illustrates some of the complexities involved in designing software that
addresses the requirements of mutual excluson, progress, and bounded
waiting requirements.

Peterson's solution is restricted to two processes that alternate execution
between their critical sections and remainder sections. The processes are
numbered P, and P;. For convenience, when presenting P-, we use P; to
denote the other process; that is, j equals 1 — .

Peterson's solution requires two data items to be shared between the two
processes:

int turn;
boolean flag(2] e

The variable turnindicates whose turn it is to enter its critical section. That is,
if turn == i, then process P; is dlowed to execute in its critica section. The
flagarray isused to indicate if a process is ready to enter its critica section.
For example, if £lag[i] istrue, thisvaue indicates that P; is ready to enter
its critical section. With an explanation of these data structures complete, we
are now ready to describe the agorithm shown in Figure 6.2.

To enter the critica section, process P; firg sets flag[i] to be true and
then setsturn to the value j, thereby asserting that if the other process wishes
to enter the critica section, it can do so. If both processes try to enter at the
same time, turn will be set to both i and j at roughly the same time. Only
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do { ’

flag[i] = TRUE
turn = j;
while (flag[j] && turn == j);

critical section

| flagli] = FALSE |

remainder section
} while (TRUE);
Fgure6.2 Thedructureof process”  in Peterson'ssolution.

one of these assignments will last; the other will occur but will be overwritten
immediately. The eventual value of turn decides which of the two processes
is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

1. Mutual exclusionis preserved.
2. The progress requirement is satisfied.
3. Thebounded-waiting requirement is met.

To prove property 1, we note that each P; enters its critical section only
if either flag[j] == false or turn ==i. Also note that, if both processes
can be executing in their critical sections at the same time, then f1ag[0] ==
flag[1] == true. Thesetwo observationsimply that F; and P, could not have
successfully executed their while statements at about the same time, since the
value of turn can beeither O or 1 but cannot be both. Hence, one of the processes
—say P;—must have successfully executed the while statement, whereas P;
had to execute at least one additional statement ("turn==j"). However, since,
at that time, flag[j] == true, and turn == j, and this condition will persist
as long as P; isin its critica section, the result follows: Mutual exclusion is
preserved.

Toproveproperties2 and 3, we notethat aprocess P, can be prevented from
entering the critical section only if it isstuck in thewhile loop with the condition
flag[j] ==trueandturn == j; thisloop is the only one possible. If P; is not
ready to enter the critical section, then £lag[j] == false,and P; can enter its
critical section. If P; hasset flag[j] totrue and isaso executing initswhile
statement, then either turn==i or turn == j.If turn == i, then P; will enter
the critical section. If turn==j, then P; will enter the critica section. However,
once P; exitsits critical section, it will reset flag[j] to false,dlowing P; to
enter its critical section. If P; resets flag[j] totrue, it must also set turnto i.
Thus, since P; does not change the value of the variable turn while executing
the while statement, P; will enter the critical section (progress) after at most
one entry by P; (bounded waiting).
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do{ »

acquirelock

critical section

releaselock
remainder section
} while (TRUE);

Figure 6.3 Solution to the critical-section problem using locks.

6.4 Synchronization Hardware

We have just described one software-based solution to the critical-section
problem. In general, we can state that any solution to the critical-section
problem requires a simple tool—a lock. Race conditions are prevented by
requiring that critical regions be protected by locks. That is, a process must
acquire alock before entering a critical section; it releases the lock when it exits
the critical section. Thisisillustrated in Figure 6.3.

In the following discussions, we explore several more solutions to the
critical-section problem using techniques ranging from hardware to software-
based APIs available to application programmers. All these solutions are based
on the premise of locking; however, as we shall see, the design of such locks
can be quite sophisticated.

Hardware features can make any programming task easier and improve
system efficiency. In this section, we present some simple hardware instructions
that are available on many systems and show how they can be used effectively
in solving the critical-section problem.

The critical-section problem could be solved simply in a uniprocessor envi-
ronment if we could prevent interrupts from occurring while a shared variable
was being modified. In this manner, we could be sure that the current sequence
of instructions would be allowed to execute in order without preemption. No
other instructions would be run, so no unexpected modifications could be
made to the shared variable. This is the approach taken by nonpreemptive
kernels.

Unfortunately, this solution is not as feasible in a multiprocessor environ-
ment. Disabling interrupts on a multiprocessor can be time consuming, as the

boolean TestAndSet (boolean *target) {
boolean rv = *target;
*target = TRUE;
return rv;

}

Figure 6.4 The definition of the TestAndSet () instruction.
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dO{ B
whil e (TestAndSetLock{&lock))
/1 do nothing

/Il critical section
| ock = FALSE;

// remai nder section
}while (TRUE);

Figure 6.5 Mutual-exclusion implementation with TestAndSet ().

message is passed to al the processors. This message passing delays entry into
each critical section, and system efficiency decreases. Also, consider the effect
on a system's clock, if the clock is kept updated by interrupts.

Many modern computer systems therefore provide special hardware
instructions that allow us either to test and modify the content of a word or
to swap the contents of two words atomically—thatis, as one uninterruptible
unit. We can use these special instructions to solve the critical-section problem
in a relatively simple manner. Rather than discussing one specific instruction
for one specific machine, we abstract the main concepts behind these types of
instructions.

The TestAndSet () instruction can be defined as shown in Figure 6.4.
The important characteristic is that this instruction is executed atomically.
Thus, if two TestAndSet C) instructions are executed simultaneously (each on
a different CPU), they will be executed sequentially in some arbitrary order. If
the machine supports the TestAndSet () instruction, then we can implement
mutual exclusion by declaring a Boolean variable lock, initialized to false.
The structure of process P; is shown in Figure 6.5.

The Swap() instruction, in contrast to the TestAndSet () instruction,
operates on the contents of two words; it is defined as shown in Figure 6.6.
Like the TestAndSet O instruction, it is executed atomicaly. If the machine
supports the Swap () instruction, then mutual exclusion can be provided as
follows. A global Boolean variable lock is declared and is initialized to false.
In addition, each process has a local Boolean variable key. The structure of
process P; isshownin Figure 6.7.

Although these algorithms satisfy the mutual-exclusion requirement, they
do not satisfy the bounded-waiting requirement. In Figure 6.8, we present

void Swap(boclean *a, boolean *b) {
boolean temp = *a;
*a — *b-
*b = temp;

}

Figure 6.6 The definition of the Swap () instruction.
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do { y
key = TRUE;
while (key == TRUE)
Swap (&lock, &key) ;

/1 critical section
| ock = FALSE;

/! remai nder section
lwhile (TRUE);

Figure 6.7 Mutual-exclusion implementation with the Swap () instruction.

another algorithm using the TestAndSet () instruction that satisfies dl the
critical-section requirements. The common data structures are

boolean waiting[n];
boolean lock;

These data structures are initidized to false. To prove that the mutual-
excluson requirement is met, we note that process P, can enter its critica
section only if ether waiting[i] == false or key — false. The value
of key can become false only if the TestAndSet () IS executed. The firs
process to execute the TestAndSet () will find key == false; dl others must

do {
waiting[i] = TRUE;
key = TRUE;

while (waitingli] && key)
key = TestaAndSet (&lock) ;
waiting[i] = FALSE;

/1 critical section

j = (| + 1) % In;
while ((§ = 1) && lwaiting[j])
j = (J + 1) % n;

if (j =1)
| ock = FALSE;
el se
waiting[j] = FALSE;

/! remai nder section
}while (TRUE);

Figure 6.8 Bounded-waiting mutual exclusion with TestAndSet ().
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wait. The variable waiting[i] can become false only if another process
leavesits critica section; only onewaiting [i] iSset to false, maintaining the
mutual-exclusion requirement.

To prove that the progress requirement is met, we note that the arguments
presented for mutual excluson aso apply here, since a process exiting the
critical section elther sets lock to false or sets waiting[j] to false. Both
alow a processthat iswaiting to enter its critica section to proceed.

To provethat the bounded-waiting requirement is met, we note that, when
a process leaves its criticd section, it scans the array waiting in the cydic
ordering@+ 1,i+ 2,...,n—1,0, ..., 1 — 1). It designatesthefirg processinthis
ordering that is in the entry section (waiting[j] =-true) as the next one to
enter the critica section. Any process waiting to enter its critical section will
thusdo sowithinn—1 turns.

Unfortunately for hardware designers, implementing atomic TestAnd-
Set () instructions on multiprocessors is not atrivia task. Such implementa-
tions are discussed in books on computer architecture.

Semaphores

The various hardware-based solutions to the critical-section problem (using
the TestAndSet() and Swap() ingructions) presented in Section 64 are
complicated for application programmers to use. To overcome this difficulty,
we can use a synchronization tool called a semaphore.

A semaphore S is an integer variable that, apart from initiaization, is
accesed only through two standard atomic operations. wait () and signal ().
Thewait () operation was originaly termed P (from the Dutchproberen,  "to
test"); signal() wasoriginaly called V (from verhogen, "to increment"). The
definition of wait O is as follows:

wait(S) {
while S <=0
; Il no-op
S--;
}

The definition of signal() is asfollows

signal (S) {
S++;
}

All the modifications to the integer value of the semaphore in the wait ()
and signal() operations must be executed indivisibly. That is, when one -
process modifies the semaphore value, no other process can smultaneoudy
modify that same semaphore vaue. In addition, in the case of wait(S), the
testing of the integer value of S (S < 0), and its possible modification (3--),
must aso be executed without interruption. We shall see how these operations
can be implemented in Section 6.5.2; fird, let us see how semaphores can be
used.
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6.5.1 Usage

Operating systems often distinguish between counting and binary semaphores.
The value of a counting semaphore can range over an unrestricted domain.
The value of a binary semaphore can range only between 0 and 1. On some
systems, binary semaphores are known as mutex locks, as they are locks that
provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem for
multiple processes. The n processes share a semaphore, mutex, initialized to 1.
Each process P; is organized as shown in Figure 6.9.

Counting semaphores can be used to control access to a given resource
consisting of a finite number of instances. The semaphore is initialized to the
number of resources available. Each process that wishes to use a resource
performs a wait () operation on the semaphore (thereby decrementing the
count). When a process releases a resource, it performs a signal() operation
(incrementing the count). When the count for the semaphore goes to 0O, al
resources are being used. After that, processes that wish to use aresource will
block until the count becomes greater than 0.

We can aso use semaphores to solve various synchronization problems.
For example, consider two concurrently running processes: P; with astatement
S; and P, with a statement 5;. Suppose we require that 5, be executed only
after S; has completed. We can implement this scheme readily by letting P,
and P, share a common semaphore synch, initialized to 0, and by inserting the
statements

51;
signal(synch);

in process P\, and the statements

wait(synch);
5;

in process P». Because synchisinitialized to 0, P, will execute S; only after P\
has invoked signal (synch), which is after statement S; has been executed.

do {
waiting (mutex) ;
/! critical section

signal (mutex) ;

/!l remai nder section
}while (TRUE);

Figure 6.9 Mutual-exclusion implementation with semaphores.
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6.5.2 Implementation i

The main disadvantage of the semaphore definition given hereisthat it requires
busy waiting. While a processis in its critical section, any other process that
tries to enter its critical section must loop continuously in the entry code. This
continual looping is clearly a problem in a real multiprogramming system,
where a single CFU is shared among many processes. Busy waiting wastes
CRU cycles that some other process might be able to use productively. This
type of semaphoreis also called a spinlock because the process "spins' while
waiting for the lock. (Spinlocks do have an advantage in that no context switch
is required when a process must wait on a lock, and a context switch may
take considerable time. Thus, when locks are expected to be held for short
times, spinlocks are useful; they are often employed on multiprocessor systems
where one thread can "spin" on one processor while another thread performs
its critical section on another processor.)

To overcome the need for busy waiting, we can modify the definition of
thewait () and signal() semaphore operations. When a process executes the
wait () operation and finds that the semaphore value is not positive, it must
wait. However, rather than engaging in busy waiting, the process can block
itself. The block operation places a process into a waiting queue associated
with the semaphore, and the state of the process is switched to the waiting
state. Then control is transferred to the CRU scheduler, which selects another
process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted
when some other process executes a signal () operation. The process is
restarted by awakeup () operation, which changes the process from the waiting
state to the ready state. The process is then placed in the ready queue. (The
CHRU may or may not be switched from the running process to the newly ready
process, depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as
a"C" gtruct:

typedef struct {

int value;

struct process *list;
} semaphore;

Each semaphore has an integer value and a list of processes list. When
a process must wait on a semaphore, it is added to the list of processes. A
signal() operation removes one process from the list of waiting processes
and awakens that process.

The wait () semaphore operation can now be defined as

wait (semaphore *S) {
S->value—-—;
if (S>value < 0) {
add this process to S->list;
block();
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The signal 0 semaphore operation can now be defined as

signal (semaphore *S) {
S->value++;
if (S>value <= 0) {
remove a process P from S->1ist;
wakeup(P) ;

}

Theblock() operation suspends the process that invokes it. The wakeup(P)
operation resumes the execution of a blocked process P. These two operations
are provided by the operating system asbasic system cdls.

Note that, athough under the classca definition of semaphores with busy
waiting the semaphore vaue is never negative, this implementation may have
negative semaphore values. If the semaphore vaue is negative, its magnitude
is the number of processes waiting on that semaphore. This fact results from
switching the order of the decrement and the test in the implementation of the
wait () operation.

The ligt of waiting processes can be easly implemented by a link fidd in
each process control block (FCB). Each semaphore contains an integer value
and a pointer to a list of FCBs One way to add and remove processes from
the list in away that ensures bounded waiting is to use a AFO queue, where
the semaphore contains both head and tail pointers to the queue. In generd,
however, the list can use any queueing strategy. Correct usage of semaphores
does not depend on a particular queueing strategy for the semaphore ligts.

The critical aspect of semaphores is that they be executed atomically. We
must guarantee that no two processes can execute wait() and signal()
operations on the same semaphore at the same time. This is a critical-section
problem; and in a single-processor environment (that is, where only one CRU
exists), we can solve it by smply inhibiting interrupts during the time the
wait () and signal () operationsare executing. Thisschemeworksinasingle-
processor environment because, once interrupts are inhibited, instructions
from different processes cannot be interleaved. Only the currently running
process executes until interrupts are reenabled and the scheduler can regain
control.

In a multiprocessor environment, interrupts must be disabled on every
processor; otherwise, instructions from different processes (running on differ-
ent processors) may be interleaved in some arbitrary way. Disabling interrupts
on every processor can be a difficult task and furthermore can seriously dimin-
ish peformance. Therefore, sMr systems must provide aternative locking
techniques—such &S spinlocks—to ensure that wait() and signal() are
performed atomically.

It is important to admit that we have not completdy eliminated busy
waiting with this definition of the wait () and signal() operations. Rather,
we have removed busy waiting from the entry section to the critica sections
of application programs. Furthermore, we have limited busy waiting to the
critical sections of thewait () and signal () operations, and these sections are
short (if properly coded, they should be no more than about ten instructions).
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Thus, the critical section is almost never occupied, and busy waiting ‘occurs
rarely, and then for only a short time. An entirely different situation exists
with application programs whose critical sections may be long (minutes or
even hours) or may almost always be occupied. In such cases, busy waiting is
extremely inefficient.

6.5.3 Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a
situation where two or more processes are waiting indefinitely for an event
that can be caused only by one of the waiting processes. The event in question
is the execution of a signal () operation. When such a state is reached, these
processes are said to be deadlocked.

To illustrate this, we consider a system consisting of two processes, Py and
P, each accessing two semaphores, S and Q, set to the value 1:

Py Py
wait (8); wait (Q);
wait (Q); wait(8);
signal (S): signal(Q);
signal(Q); signal(8);

Supposethat P, executeswait (S) and then P; executeswait (Q). When P,
executes wait (Q), it must wait until P; executes signal (Q). Similarly, when
P, executes wait(S), it must wait until P, executes signal(S). Since these
signal() operations cannot be executed, Py and P; are deadlocked.

We say that a set of processesis in a deadlock state when every process in
the set iswaiting for an event that can be caused only by another process in the
set. The eventswith which we are mainly concerned here are resourceacquisition
and release. However, other types of events may result in deadlocks, aswe shall
show in Chapter 7. In that chapter, we shall describe various mechanisms for
dealing with the deadlock problem.

Another problem related to deadlocks is indefinite blocking, or starva-
tion, a situation in which processes wait indefinitely within the semaphore.
Indefinite blocking may occur if we add and remove processes from the list
associated with a semaphore in LIFO (last-in, first-out) order.

Classic Problems of Synchronization

In this section, we present a number of synchronization problems as examples
of alarge class of concurrency-control problems. These problems are used for
testing nearly every newly proposed synchronization scheme. In our solutions
to the problems, we use semaphores for synchronization.
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do {
/1 produce an itemin nextp

wait (empty) ;
walt {mutex) ;

/1 add nextp to buffer

signal (mutex) ;
signal (full} ;
}whi | e (TRUE) ,-

Figure 6.10 The structure of the producer process.

6.6.1 The Bounded-Buffer Problem

The bounded-buffer problem was introduced in Section 6.1; it is commonly
used to illustrate the power of synchronization primitives. We present here a
general structure of this schemewithout committing ourselves to any particular
implementation; we provide a related programming project in the exercises at
the end of the chapter.

We assume that the pool consists of n buffers, each capable of holding
one item. The mutex semaphore provides mutual exclusion for accesses to the
buffer pool and is initialized to the value 1. The empty and fullsemaphores
count the number of empty and full buffers. The semaphore empty isinitialized
to the value n; the semaphore fullisinitialized to the value 0.

The code for the producer process is shown in Figure 6.10; the code for
the consumer process is shown in Figure 6.11. Note the symmetry between
the producer and the consumer. We can interpret this code as the producer
producing full buffers for the consumer or as the consumer producing empty
buffers for the producer.

do {
wait (full);
wait (mutex) ;

/!l renove an itemfrombuffer to nextc

signal (mutex) ;
signal (empty) ;

/] consune the itemin nextc
}while (TRUE);

Figure 6.11 The structure of the consumer process.
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6.6.2 The Readers-Writers Problem

A database is to be shared among several concurrent processes. Some of these
processes may want only to read the database, whereas others may want to
update (that is, to read and write) the database. We distinguish between these
two types of processes by referring to the former as readers and to the latter
aswriters. Obvioudy, if two readers access the shared data s multaneously, no
adverse dfects will result. However, if a writer and some other thread (either
areader or awriter) access the database simultaneoudly, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers
have exclusive access to the shared database. This synchronization problemis
referred to asthe reader s-writers problem. Since it was originally stated, it has
been used to test nearly every new synchronization primitive. The readers-
writers problem has severa variations, dl involving priorities. The smplest
one, referred to as the first readers—writers problem, requires that no reader
will be kept waiting unless a writer has already obtained permission to use
the shared object. In other words, no reader should wait for other readers to
finish amply because awriter is waiting. The second readers-writers problem
requires that, once awriter is ready, that writer performs its write as soon as
possible. In other words, if a writer is waiting to access the object, no new
readers may start reading.

A solution to either problem may result in starvation. In the firs case,
writers may starve; in the second case, readers may starve. For this reason,
other variants of the problem have been proposed. In this section, we present a
solution to the fird readers—writers problem. Refer to the bibliographical notes
a the end of the chapter for references describing starvation-free solutions to
the second readers—writers problem.

In the solution to the firdt readers—writers problem, the reader processes
share the following data structures:

semaphore mutex, wrt;
int readcount;

The semaphoresmutex and wrt areinitialized to 1; readcount isinitialized
to 0. The semaphore wrt is common to both reader and writer processes.
The mutex semaphore is used to ensure mutual excluson when the variable
readcount is updated. The readcount variable keeps track of how many
processes are currently reading the object. The semaphore wrt functions as a
mutual-exclusion semaphore for the writers. It is aso used by the firg or last

do {
wait (wrt) ;
/[l witing is perforned

signal (wt) ;
}while (TRUE);

Figure 6.12 The structure of a writer process.
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dO { *.
wait (mutex) ;
readcount++;
if (readcount == 1)
wait (wrt) ;
signal (mutex) ;

/1 reading is perfornmed

wai t (mut ex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
}while (TRUE);

Figure 6.13 The structure of a reader process.

reader that enters or exits the critical section. It is not used by readers who
enter or exit while other readers are in their critical sections.

The code for awriter processis shown in Figure 6.12; the code for a reader
process is shown in Figure 6.13. Note that, if a writer is in the critical section
and n readers are waiting, then onereader is queued on wrt, and n— 1 readers
are queued on mutex. Also observe that, when a writer executes signal (wrt),
we may resume the execution of either the waiting readers or a single waiting
writer. The selection is made by the scheduler.

The readers~writers problem and its solutions has been generalized to
provide reader -writer locks on some systems. Acquiring areader-writer lock
requires specifying the mode of the lock: either read or write access. When a
process only wishes to read shared data, it requests the reader—writer lock
in read mode; a process wishing to modify the shared data must request the
lock in write mode. Multiple processes are permitted to concurrently acquire
a reader-writer lock in read mode; only one process may acquire the lock for
writing as exclusive access is required for writers.

Reader-writer locks are most useful in the following situations:

* Inapplicationswhere it iseasy to identify which processes only read shared
data and which threads only write shared data.

* Inapplicationsthat have more readersthan writers. Thisisbecause reader-
writer locks generally require more overhead to establish than semaphores
or mutual exclusion locks, and the overhead for setting up a reader-writer
lock is compensated by the increased concurrency of allowing multiple
readers.

6.6.3 The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The
philosophers share a circular table surrounded by five chairs, each belonging
to one philosopher. In the center of the tableis abowl of rice, and thetableislaid
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Figure 6.14 The situation of the dining philosophers.

with five single chopsticks (Figure 6.14). When a philosopher thinks, she does
not interact with her colleagues. From time to time, a philosopher gets hungry
and tries to pick up the two chopsticks that are closest to her (the chopsticks
that are between her and her left and right neighbors). A philosopher may pick
up only one chopstick at atime. Obvioudy, she cannot pick up a chopstick that
is dready in the hand of a neighbor. When ahungry philosopher has both her
chopsticks at the same time, she eats without releasing her chopsticks. When
she isfinished eating, she puts down both of her chopsticks and startsthinking
again.

The dining-philosophers problem is considered a classic synchronization
problem neither because of its practical importance nor because computer
scientists didike philosophers but because it is an example of a large class
of concurrency-control problems. It is a Smple representation of the need
to alocate severa resources among severa processes in a deadlock-free and
darvation-free manner.

One smple solution is to represent each chopstick with a semaphore. A
philosopher tries to grab a chopstick by executing await () operation on that
semaphore; she releases her chopsticks by executing the signal () operation
on the appropriate semaphores. Thus, the shared data are

semaphore chopstick[5];

where dl the dements of chopstick are initidized to 1. The structure of
philosopher i is shown in Figure 6.15.

Although this solution guarantees that no two neighbors are eating
smultaneoudly, it nevertheless must be rgected because it could create a
deadlock. Suppose that al five philosophers become hungry simultaneously
and each grabs her Ieft chopstick. All the elements of chopstick will now be
equal to 0. When each philosopher triesto grab her right chopstick, she will be
delayed forever.

Severd possible remedies to the deadlock problem are listed next. In
Section 6.7, we present a solution to the dining-philosophers problem that
ensures freedom from deadlocks.

* Allow a most four philosophers to be sitting ssmultaneoudly at the table.
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do { s
wai t (chopstick[i]) ;
wait {chopstick[ (i +1) %5] ) ;

Il eat
sig;na;l (‘chopstick[ i1);
signal (chopstick[(i +1) %5]);
// think
}while (TRUE);
Figure 6.15 The structure of philosopher i.

» Allow a philosopher to pick up her chopsticks only if both chopsticks are
available (to do this she must pick them up in acritical section).

* Use an asymmetric solution; that is, an odd philosopher picks up first her
left chopstick and then her right chopstick, whereas an even philosopher
picks up her right chopstick and then her left chopstick.

Finally, any satisfactory solution to the dining-philosophers problem must
guard against the possibility that one of the philosophers will starve to death.
A deadlock-free solution does not necessarily eliminate the possibility of
starvation.

Monitors

Although semaphores provide a convenient and effective mechanism for
process synchronization, using them incorrectly can result in timing errors
that are difficult to detect, since these errors happen only if some particular
execution sequences take place and these sequences do not always occur.

We have seen an example of such errors in the use of counters in our
solution to the producer-consumer problem (Section 6.1). In that example,
the timing problem happened only rarely, and even then the counter value
appeared to be reasonable—off by only 1. Nevertheless, the solution is
obviously not an acceptable one. It is for this reason that semaphores were
introduced in the first place.

Unfortunately, such timing errors can still occur when semaphores are
used. To illustrate how, we review the semaphore solution to the critical-
section problem. All processes share a semaphore variable mutex, which is.
initialized to 1. Each process must execute wait (mutex) before entering the
critical section and signal (mutex) afterward. If this sequence is not observed,
two processes may be in their critical sections simultaneously. Let us examine
the various difficulties that may result. Note that these difficulties will arise
even if asingle processis not well behaved. This situation may be caused by an
honest programming error or an uncooperative programmer.
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* Suppose that a process interchanges the order in which the wait () and
signal() operations on the semaphore mutex are executed, resulting in
the following execution:

signal (mutex);
critical section
walt (mutex);

Inthissituation, several processesmay be executingintheir critical sections
smultaneoudly, violating the mutual-exclusion requirement. This error
may be discovered only if severad processes are smultaneoudy active
in their critical sections. Note that this situation may not aways be
reproducible.

» Suppose that a process replaces signal (mutex) with wait (mutex). That
IS, it executes

wait (mutex);
cri‘fi'cd section
waitzﬁutex);
In this case, a deadlock will occur.

» Suppose that a process omits the wait (mutex), or the signal (mutex), or
both. In this case, either mutual exclusion is violated or a deadlock will
OCCUI.

These examples illustrate that various types of errors can be generated easly
when programmers use semaphores incorrectly to solve the critica-section
problem. Similar problems may arise in the other synchronization models that
we discussed in Section 6.6.

To ded with such errors, researchers have developed high-level language
congtructs. In this section, we describe one fundamenta high-level synchro-
nization construct—the monitor type.

6.7.1 Usage

A type, or abstract data type, encapsulates private data with public methods
to operate on that data. A monitor type presents a set of programmer-defined
operationsthat are provided mutual exclusion within the monitor. The monitor
type dso contains the declaration of variables whose values define the state
of an instance of that type, adong with the bodies of procedures or functions
that operate on those variables. The syntax of a monitor is shown in Figure
6.16. The representation of a monitor type cannot be used directly by the
various processes. Thus, aprocedure defined within a monitor can access only
those variables declared locdly within the monitor and its forma parameters.
Smilarly, the locd variables of a monitor can be accessed by only the loca
procedures.
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monitor monitor name

// shared vari abl e decl arations

procedure PT (. . . ) {

}

procedure P2 (.. .){

}

procedure Pn (.. . ) {

}

initialization code (. . . ) {

}
}

Figure 6.16 Syntax of a monitor.

The monitor construct ensures that only one process at a time can be
active within the monitor. Consequently, the programmer does not need
to code this synchronization constraint explicitly (Figure 6.17). However,
the monitor construct, as defined so far, is not sufficiently powerful for
modeling some synchronization schemes. For this purpose, we need to define
additional synchronization mechanisms. These mechanisms are provided by
the condition construct. A programmer who needs to write a tailor-made
synchronization scheme can define one or more variables of type condition:

condition x, v;

The only operations that can be invoked on a condition variable are wait ()
and signal (). The operation

x.wait();

means that the process invoking this operation is suspended until another
process invokes

x.signal );

The x. signal () operation resumes exactly one suspended process. If no
process is suspended, then the signal() operation has no effect; that is, the
state of x is the same as if the operation had never been executed (Figure
6.18). Contrast this operation with the signal() operation associated with
semaphores, which always affects the state of the semaphore.
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entry queue

Figure 6.17 Schematic view of a monitor.

Now suppose that, when thex. signal () operationisinvoked by aprocess
P, there is a suspended process § associated with condition x. Clearly, if the
suspended processQ isallowed to resumeits execution, the signaling process P
must wait. Otherwise, both P and @ would be active simultaneously within the
monitor. Note, however, that both processes can conceptually continue with
their execution. Two possibilities exist:

1. Signal and wait. P either waits until (O leaves the monitor or waits for
another condition.

2. Signal and continue. Q either waits until P leaves the monitor or waits
for another condition.

There are reasonable arguments in favor of adopting either option. On the
one hand, since P was already executing in the monitor, thesignal-and-continue
method seems more reasonable. On the other hand, if we allow thread P to
continue, then by the time Q is resumed, the logical condition for which Q
was waiting may no longer hold. A compromise between these two choices
was adopted in the language Concurrent Pascal. When thread P executes the
signal operation, it immediately leaves the monitor. Hence, Q is immediately
resumed.

6.7.2 Dining-Philosophers Solution Using Monitors

We now illustrate monitor concepts by presenting a deadlock-free solution to
the dining-philosophers problem. This solution imposes the restriction that a
philosopher may pick up her chopsticks only if both of them are available. To
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entry queue

queues associated with {_y ?_.{:"'
X, yconditions 1 y

Figure 6.18 Monitor with condition variables.

code this solution, we need to distinguish among three states in which we may
find a philosopher. For this purpose, we introduce the following data structure:

enum { thinking, hungry, eating} state[5];

Philosopher i can set the variable state[i] = eating only if her two
neighbors are not eating: (state[(i+4) % 5] != eating)and (state[(i+1)
% 5] != eating).

We also need to declare

condition self [5];

where philosopher i can delay herself when she is hungry but is unable to
obtain the chopsticks she needs.

Wearenow in aposition to describe our solution to the dining-philosophers
problem. The distribution of the chopsticks is controlled by the monitor dp,
whose definition is shown in Figure 6.19. Each philosopher, before starting to
eat, must invoke the operation pi ckup (). This may result in the suspension of
the philosopher process. After the successful completion of the operation, the
philosopher may eat. Following this, the philosopher invokes the putdownO
operation. Thus, philosopher i must invoke the operations pickup() and
putdown () in the following sequence:

dp.pickup(i);
eat

dp.putdown(i);
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monitor dp ,
{
enum {THINKING, HUNGRY, EATING}state {51
condition self [5] ;

voi d pickup(int 1) {
state[i] = HUNGRY;

test (i) ;
if (state[i] !'= EATING
sel f[i] .wait {);
}
void putdown(int i) {

statetil = THI NKI NG

test ((1 + 4) %5} ;

test{(i +1) %5) ;
}

void test(int i) {

if ((state[(i + 4) %5 !=EATING s&&
{state[i] == HUNGRY) &&
(state[(i + 1) %5] != EATING)) {

state[i] = EATING
self[i] .signal ();
J
}

initialization-code() {
for (inti =0; i <5; i++)
state[i] = THI NKI NG

}

Figure 6.19 A monitor solution to the dining-philosopher problem.

Itiseasy to show that this solution ensures that no two neighbors are eating
simultaneously and that no deadlocks will occur. We note, however, that it is
possible for a philosopher to starve to death. We do not present a solution to
this problem but rather leave it as an exercise for you.

6.7.3 Implementing a Monitor Using Semaphores

We now consider a possible implementation of the monitor mechanism using
semaphores. For each monitor, asemaphoremut X (initialized to 1) isprovided.
A process must execute wait (mutex) before entering the monitor and must
execute signal (mutex) after leaving the monitor.

Since asignaling process must wait until the resumed process either leaves
or waits, an additional semaphore, next, is introduced, initialized to O, on
which the signaling processes may suspend themselves. An integer variable
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next _count is aso provided to count the number of processes suspended on
next. Thus, each external procedure F is replaced by ’

wait (mutex) ;
body of F

if (next_count > Q)
signal (next);
else
signal (mutex);

Mutual exclusion within a monitor is ensured.

We can now describe how condition variables are implemented. For each
condition x, we introduce a semaphore x_sem and an integer variable x_count,
both initialized to 0. The operation x.wait () can now be implemented as

x_count++;
if (next count > 0)
signal (next);
el se
signal (mutex) ;
wait (x_sem) ;
X_count--;

The operation x. signal () can be implemented as

if (x_count > 0) {
next_count++;
signal (x_sem) ;
wait(next);
next _count--;

}

This implementation is applicable to the definitions of monitors given by
both Hoare and Brinch-Hansen. In some cases, however, the generality of the
implementation is unnecessary, and a significant improvement in efficiency is
possible. We leave this problem to you in Exercise 6.17.

6.7.4 Resuming Processes Within a Monitor

We turn now to the subject of process-resumption order within a monitor. If

several processes are suspended on condition X, and an x. signal () operation
is executed by some process, then how do we determine which of the
suspended processes should be resumed next? One simple solution isto use an’
FCOFS ordering, so that the process waiting the longest is resumed first. In many
circumstances, however, such a simple scheduling schemeis not adequate. For
this purpose, the conditional-wait construct can be used; it has the form

x.wait(c);
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nmoni t or Resour ceAl | ocat or \
bool ean busy;
condi tion x;

void acquire(int time) {
if (busy)
x.wait{time) ;
busy = TRUE;
}

voi d release() {
busy = FALSE;
x.signal () ;

}

initializaticn.code(} |
busy = FALSE;

}

Figure 6.20 A monitor to allocate a single resource.

where c is an integer expression that is evaluated when the wait () operation
is executed. The value of ¢, which is called a priority number, is then stored
with the name of the process that is suspended. When x. signal () is executed,
the process with the smallest associated priority number is resumed next.

To illustrate this new mechanism, we consider the ResourceAllocator
monitor shown in Figure 6.20, which controls the allocation of a single resource
among competing processes. Each process, when requesting an allocation
of this resource, specifies the maximum time it plans to use the resource.
The monitor allocates the resource to the process that has the shortest time-
allocation request. A process that needs to access the resource in question must
observe the following sequence:

R.acquire(t);
access the resource;

R.release();

where R is an instance of type ResourceAllocator.

Unfortunately, the monitor concept cannot guarantee that the preceding
access sequence will be observed. In particular, the following problems can
occur:

» A process might access a resource without first gaining access permission
to the resource.

» A process might never release a resource once it has been granted access
to the resource.
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» A process might attempt to release a resource that it never requested.

* A process might request the same resource twice (without first releasing
the resource).

The same difficulties are encountered with the use of semaphores, and
these difficulties are similar in nature to those that encouraged us to develop
the monitor constructs in the first place. Previously, we had to worry about
the correct use of semaphores. Now, we have to worry about the correct use of
higher-level programmer-defined operations, with which the compiler can no
longer assist us.

One possible solution to the current problem is to include the resource-
access operations within the ResourceAllocator monitor. However, using
this solution will mean that scheduling is done according to the built-in
monitor-scheduling algorithm rather than the one we have coded.

To ensure that the processes observe the appropriate sequences, we must
inspect al the programs that make use of the ResourceAllocator monitor
and its managed resource. We must check two conditions to establish the
correctness of this system. First, user processes must always make their calls
on the monitor in a correct sequence. Second, we must be sure that an
uncooperative process does not simply ignore the mutual-exclusion gateway
provided by the monitor and try to access the shared resource directly, without
using the access protocols. Only if these two conditions can be ensured can we
guarantee that no time-dependent errors will occur and that the scheduling
algorithm will not be defeated.

Although thisinspection may be possible for a small, static system, it is not
reasonable for alarge system or adynamic system. This access-control problem
can be solved only by additional mechanisms that will be described in Chapter
14.

Many programming languages have incorporated the idea of the monitor
as described in this section, including Concurrent Pascal, Mesa, C# (pro-
nounced C-sharp), and Java. Other languages-—such as Erlang—provide some
type of concurrency support using a similar mechanism.

Synchronization Examples

We next describe the synchronization mechanisms provided by the Solaris,
Windows XP, and Linux operating systems, as well as the Pthreads AP. We
have chosen these three systems because they provide good examples of
different approaches for synchronizing the kernel, and we have included the
Pthreads AR because it iswidely used for thread creation and synchronization
by developers on UNIX and Linux systems. As you will see in this section, the
synchronization methods available in these differing systems vary in subtle
and significant ways.

6.8.1 Synchronization in Solaris

To control access to critical sections, Solaris provides adaptive mutexes, condi-
tion variables, semaphores, reader-writer locks, and turnstiles. Solarisimple-
ments semaphores and condition variables essentialy as they are presented
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in Sections 6.5 and 6.7. In this section, we describe adaptive mutexes, reader-
writer locks, and turnstiles.

An adaptive mutex protects access to every critical data item. On a
multiprocessor system, an adaptive mutex starts as a standard semaphore
implemented as a spinlock. If the data are locked and therefore already in use,
the adaptive mutex does one of two things. If the lock is held by a thread that
is currently running on another CPU, the thread spins while waiting for the
lock to become available, because the thread holding the lock is likely to finish
soon. If the thread holding the lock is not currently in run state, the thread
blocks, going to sleep until it is awakened by the release of the lock. It is put
to sleep so that it will not spin while waiting, since the lock will not be freed
very soon. A lock held by a sleeping thread is likely to be in this category. On
a single-processor system, the thread holding the lock is never running if the
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lock is being tested by another thread, because only one thread can run at a
time. Therefore, on this type of system, threads always sleep rather than spin
if they encounter a lock.

Solaris uses the adaptive-mutex method to protect only data that are
accessed by short code segments. That is, a mutex is used if a lock will be
held for less than a few hundred instructions. If the code segment is longer
than that, spin waiting will be exceedingly inefficient. For these longer code
segments, condition variables and semaphores are used. If the desired lock is
aready held, the thread issues await and sleeps. When athread frees the lock, it
issues asignal to the next sleeping thread in the queue. The extracost of putting
a thread to slegp and waking it, and of the associated context switches, is less
than the cost of wasting several hundred instructions waiting in a spinlock.

Reader-writer locks are used to protect data that are accessed frequently
but are usually accessed in a read-only manner. In these circumstances,
reader-writer locks are more efficient than semaphores, because multiple
threads can read data concurrently, whereas semaphores always serialize access
tothe data. Reader—writer locks arerelatively expensive to implement, so again
they are used on only long sections of code.

Solaris uses turnstiles to order the list of threads waiting to acquire either
an adaptive mutex or a reader-writer lock. A turnstile is a queue structure
containing threads blocked on a lock. For example, if one thread currently
owns the lock for a synchronized object, all other threads trying to acquire the
lock will block and enter the turnstile for that lock. When the lock is released,
the kernel selects a thread from the turnstile as the next owner of the lock.
Each synchronized object with at least one thread blocked on the object's lock
requires a separate turnstile. However, rather than associating a turnstile with
each synchronized object, Solaris gives each kernel thread its own turnstile.
Because a thread can be blocked only on one object at a time, this is more
efficient than having a turnstile per object.

The turnstile for the first thread to block on a synchronized object becomes
the turnstile for the object itself. Subsequent threads blocking on the lock will
be added to this turnstile. When the initial thread ultimately releases the lock,
it gains a new turnstile from alist of free turnstiles maintained by the kernel. To
prevent a priority inversion, turnstiles are organized according to a priority-
inheritance protocol (Section 19.5). This means that if a lower-priority thread
currently holds a lock that a higher-priority thread is blocked on, the thread
with the lower priority will temporarily inherit the priority of the higher-
priority thread. Upon releasing the lock, the thread will revert to its original
priority.

Note that the locking mechanisms used by the kernel are implemented
for user-level threads as well, so the same types of locks are available inside
and outside the kernel. A crucial implementation difference is the priority-
inheritance protocol. Kernel-locking routines adhere to the kernel priority-
inheritance methods used by the scheduler, as described in Section 19.5;
user-level thread-locking mechanisms do not provide this functionality. o

To optimize Solaris performance, developers have refined and fine-tuned
the locking methods. Because locks are used frequently and typically are used
for crucial kernel functions, tuning their implementation and use can produce
great performance gains.



Chapter 6 Process Synchronization

6.8.2 Synchronization in Windows XP ?

The Windows XP operating system is a multithreaded kernel that provides
support for real-time applications and multiple processors. When the Windows
XP kernel accesses a global resource on a uniprocessor system, it temporarily
masks interrupts for al interrupt handlers that may also access the global
resource. On a multiprocessor system, Windows XP protects access to global
resources using spinlocks. Just as in Solaris, the kernel uses spinlocks only to
protect short code segments. Furthermore, for reasons of efficiency, the kernel
ensures that a thread will never be preempted while holding a spinlock.

For thread synchronization outside the kernel, Windows XP provides
dispatcher objects. Using a dispatcher object, threads synchronize according
to several different mechanisms, including mutexes, semaphores, events, and
timers. The system protects shared data by requiring athread to gain ownership
of a mutex to access the data and to release ownership when it is finished.
Semaphores behave as described in Section 6.5. Events are similar to condition
variables; that is, they may notify a waiting thread when a desired condition
occurs. Finaly, timers are used to notify one (or more than one) thread that a
specified amount of time has expired.

Dispatcher objects may be in either a signaled state or a nonsignaled state.
A signaled state indicates that an object is available and a thread will not block
when acquiring the object. A nonsignaled state indicates that an object is not
available and a thread will block when attempting to acquire the object. We
illustrate the state transitions of a mutex lock dispatcher object in Figure 6.21.

A relationship exists between the state of a dispatcher object and the state
of athread. When a thread blocks on a nonsignaled dispatcher object, its state
changes from ready to waiting, and the thread is placed in a waiting queue
for that object. When the state for the dispatcher object moves to signaled,
the kernel checks whether any threads are waiting on the object. If so, the
kernel moves one thread —or possibly more threads—from the waiting state
to the ready state, where they can resume executing. The number of threads the
kernel selects from the waiting queue depends on the type of dispatcher object
it is waiting on. The kernel will select only one thread from the waiting queue
for a mutex, since a mutex object may be "owned" by only a single thread. For
an event object, the kernel will select al threads that are waiting for the event.

We can use a mutex lock as an illustration of dispatcher objects and
thread states. If a thread tries to acquire a mutex dispatcher object that isin a
nonsignaled state, that thread will be suspended and placed in a waiting queue
for the mutex object. When the mutex moves to the signaled state (because
another thread has released the lock on the mutex), the thread waiting at the

owner thread releases mutex lock

thread acquires mutex lock

Figure 6.21 Mutex dispatcher object.
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front of the queue will be moved from the waiting state to the ready state and
will acquire the mutex lock. ’

We provide a programming project at the end of this chapter that uses
mutex locks and semaphores in the Win32 AR.

6.8.3 Synchronization in Linux

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process
running in kernel mode could not be preempted —even if a higher-priority
process became available to run. Now, however, the Linux kernel is fully
preemptive, so atask can be preempted when it is running in the kernel.

The Linux kernel provides spinlocks and semaphores (as well as reader-
writer versions of these two locks) for locking in the kernel. On SMP machines,
the fundamental locking mechanism is a spinlock, and the kernel is designed so
that the spinlock is held only for short durations. On single-processor machines,
spinlocks are inappropriate for use and are replaced by enabling and disabling
kernel preemption. That is, on single-processor machines, rather than holding
a spinlock, the kernel disables kernel preemption; and rather than releasing
the spinlock, it enables kernel preemption. This is summarized below:

single processor [ multiple processors

Release spin lock:

Linux uses an interesting approach to disable and enable kernel preemp-
tion. It provides two simple system calls—preempt_disable() and pre-
empt _enable() —for disabling and enabling kernel preemption. In addition,
however, the kernel is not preemptible if a kernel-mode task is holding a lock.
To enforce this, each task in the system has athread-infostructure containing
a counter, preempt _count, to indicate the number of locks being held by the
task. Whenalock isacquired, preempt_countisincremented. Itisdecremented
when a lock is released. If the value of preempt_count for the task currently
running is greater than zero, it is not safe to preempt the kernel, as this task
currently holds a lock. If the count is zero, the kernel can safely be interrupted
(assuming there are no outstanding calls to preempt disable()).

Spinlocks—along with enabling and disabling kernel preemption—are
used in the kernel only when a lock (or disabling kernel preemption) is held
for a short duration. When a lock must be held for alonger period, semaphores
are appropriate for use.

6.8.4 Synchronization in Pthreads

The Pthreads AR provides mutex locks, condition variables, and read-write
locks for thread synchronization. This AR is available for programmers and
is not part of any particular kernel. Mutex locks represent the fundamental
synchronization technique used with Pthreads. A mutex lock is used to protect
critical sections of code—that is, a thread acquires the lock before entering
a critical section and releases it upon exiting the critical section. Condition
variables in Pthreads behave much as described in Section 6.7. Read-write
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locks behave similarly to the locking mechanism described in Section, 6.6.2.
Many systems that implement Pthreads also provide semaphores, although
they are not part of the Pthreads standard and instead belong to the POSIX SEM
extension. Other extensions to the Pthreads Art include spinlocks, although not
all extensions are considered portable from one implementation to another. We
provide a programming project at the end of this chapter that uses Pthreads
mutex locks and semaphores.

Atomic Transactions

The mutual exclusion of critical sections ensures that the critical sections are
executed atomically. That is, if two critical sections are executed concurrently,
the result is equivalent to their sequential execution in some unknown order.
Although this property is useful in many application domains, in many cases
we would like to make sure that a critical section forms a single logical unit
of work that either is performed in its entirety or is not performed at al. An
example is funds transfer, in which one account is debited and another is
credited. Clearly, it is essential for data consistency either that both the credit
and debit occur or that neither occur.

Consistency of data, along with storage and retrieval of data, is a concern
often associated with database systems. Recently, there has been an upsurge of
interest in using database-systems techniques in operating systems. Operating
systems can be viewed as manipulators of data; as such, they can benefit from
the advanced techniques and models available from database research. For
instance, many of the ad hoc technigues used in operating systems to manage
files could be more flexible and powerful if more formal database methods
were used in their place. In Sections 6.9.2 to 6.9.4, we describe some of these
database technigues and explain how they can be used by operating systems.
First, however, we deal with the general issue of transaction atomicity. It isthis
property that the database techniques are meant to address.

6.9.1 System Model

A collection of instructions (or operations) that performs a single logica
function is called a transaction. A magjor issue in processing transactions is the
preservation of atomicity despite the possibility of failures within the computer
system.

We can think of a transaction as a program unit that accesses and perhaps
updates various data items that reside on a disk within some files. From our
point of view, such a transaction is simply a sequence of read and write
operations terminated by either a commit operation or an abort operation.
A commit operation signifies that the transaction has terminated its execution
successfully, whereas an abort operation signifies that the transaction has

ended its normal execution due to some logical error or a system failure. *

If a terminated transaction has completed its execution successfully, it is
committed; otherwise, itis aborted.

Since an aborted transaction may already have modified the data that it
has accessed, the state of these data may not be the same as it would have
been if the transaction had executed atomically. So that atomicity is ensured,
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an aborted transaction must have no effect on the state of the data that it has
already modified. Thus, the state of the data accessed by an aborted transaction
must be restored to what it wasjust before the transaction started executing. We
say that such a transaction has been rolled back. It is part of the responsibility
of the system to ensure this property.

To determine how the system should ensure atomicity, we need first to
identify the properties of devices used for storing the various data accessed
by the transactions. Various types of storage media are distinguished by their
relative speed, capacity, and resilience to failure.

* Volatile storage. Information residing in volatile storage does not usually
survive system crashes. Examples of such storage are main and cache
memory. Access to volatile storage is extremely fast, both because of the
speed of the memory access itself and because it is possible to access
directly any data item in volatile storage.

* Nonvolatile storage. Information residing in nonvolatile storage usually
survives system crashes. Examples of media for such storage are disks and
magnetic tapes. Disks are more reliable than main memory but lessreliable
than magnetic tapes. Both disks and tapes, however, are subject to falure,
which may result in loss of information. Currently, nonvolatile storage is
slower than volatile storage by several orders of magnitude, because disk
and tape devices are electromechanical and require physical motion to
access data.

» Stable storage. Information residing in stable storage is never lost (never
should be taken with a grain of salt, since theoretically such absolutes
cannot be guaranteed). To implement an approximation of such storage, we
need to replicate information in several nonvolatile storage caches (usually
disk) with independent failure modes and to update the information in a
controlled manner (Section 12.8).

Here, we are concerned only with ensuring transaction atomicity in an
environment where failures result in the loss of information on volatile storage.

6.9.2 Log-Based Recovery

One way to ensure atomicity is to record, on stable storage, information
describing al the modifications made by the transaction to the various data it
accesses. The most widely used method for achieving this form of recording
is write-ahead logging. Here, the system maintains, on stable storage, a data
structure called the log. Each log record describes a single operation of a
transaction write and has the following fields:

* Transaction name. The unique name of the transaction that performed the
write operation

» Data item name. The unique name of the data item written

* Old value. The value of the data item prior to the write operation

* New value. The value that the data item will have after the write
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Other specid log records exist to record significant events during transac-
tion processing, such asthe start of a transaction and the commit or abort of a
transaction.

Before a transaction T, starts its execution, the record < 7, starts>iS
written to thelog. During itSexecution, any write operation by T; ispreceded
by the writing of the appropriate new record to the log. When 7/ commits, the
record < T, commits> iswritten to thelog.

Because the information in the log is used in reconstructing the state of the
data items accessed by the various transactions, we cannot alow the actua
update to a data item to take place before the corresponding log record is
written out to stable storage. We therefore require that, prior to execution of a
write(X) operation, the log records corresponding to X be written onto stable
storage.

Note the performance penalty inherent in this system. Two physical writes
are required for every logical write requested. Also, more storage is needed,
both for the data themsalves and for the log recording the changes. In cases
where the data are extremely important and fast failure recovery is necessary,
the price is worth the functiondity.

Using the log, the system can handle any failure that does not result in the
loss of information on nonvolatile storage. The recovery algorithm uses two
procedures:

* undo(T;), which restores the value of dl data updated by transaction 7; to
the old values

» redo(T;), which sets the value of dl data updated by transaction T; to the
new vaues

The set of data updated by 7} and their respective old and new values can be
found in the log.

The undo and redo operations must be idempotent (that is, multiple
executions must have the same result as does one execution) to guarantee
correct behavior, even if a falure occurs during the recovery process.

If atransaction 7} aborts, then we can restore the state of the data that
it has updated by smply executing undo(T;). If a system failure occurs, we
restore the state of dl updated data by consulting the log to determine which
transactions need to be redone and which need to be undone. This classfication
of transactions is accomplished as follows:

» Transaction T; needs to be undone if the log containsthe < T; starts>
record but doesnot containthe< 7;  commits> record.

» TransactionT; needsto beredoneif thelog containsboththe < T, starts>
and the < T; commits> records.

6.9.3 Checkpoints

When a system failure occurs, we must consult the log to determine those
transactions that need to be redone and those that need to be undone. In
principle, we need to search the entirelog to make these determinations. There
are two mgor drawbacks to this approach:
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1. The searching process is time consuming.

2. Most of the transactions that, according to our algorithm, need to be
redone have already actually updated the data that the log says they
need to modify. Although redoing the data modifications will cause no
harm (due to idempotency), it will nevertheless cause recovery to take
longer.

To reduce these types of overhead, we introduce the concept of check-
points. During execution, the system maintains the write-ahead log. In addi-
tion, the system periodically performs checkpoints that require the following
sequence of actions to take place:

1. Output al log records currently residing in volatile storage (usually main
memory) onto stable storage.

Output al modified dataresiding in volatile storage to the stable storage.
Output a log record <checkpoint=> onto stable storage.

The presence of a <checkpoint> record in the log allows the system
to streamline its recovery procedure. Consider a transaction 7, that committed
prior to the checkpoint. The < T; commits> record appearsin the log before the
<checkpoint> record. Any modifications made by T, must have been written
to stable storage either prior to the checkpoint or as part of the checkpoint
itsdf. Thus, at recovery time, there is no need to perform a redo operation on
Tj.

This observation allows us to refine our previous recovery algorithm. After
a failure has occurred, the recovery routine examines the log to determine
the most recent transaction 7] that started executing before the most recent
checkpoint took place. It finds such a transaction by searching the log backward
to find the first <checkpoint> record, and then finding the subsequent
< T; start>record.

Once transaction T, hasbeenidentified, the redo and undo operations need
be applied only to transaction Tj and all transactions Tj that started executing
after transaction T;. Well call these transactions set T. The remainder of the log
can thus be ignored. The recovery operations that are required are as follows:

e For al transactions T; in T such that the record < T; commits> appearsin
the log, execute redo(T;).

» For dl transactions T in T that have no < T, commits> record in the log,
execute undo(T;).

6.9.4 Concurrent Atomic Transactions

We have been considering an environment in which only one transaction can
be executing at a time. We now turn to the case where multiple transactions
are active simultaneously. Because each transaction is atomic, the concurrent
execution of transactions must be equivalent to the case where these trans-
actions are executed serially in some arbitrary order. This property, called
serializability, can be maintained by simply executing each transaction within



Chapter 6 Process Synchronization

a critical section. That is, al transactions share a common semaphore mutex,
whichisinitialized to 1. When a transaction starts executing, itsfirst action isto
execute wait(mutex). After the transaction either commits or aborts, it executes
signal(mutex).

Although this scheme ensures the atomicity of al concurrently executing
transactions, it is nevertheless too restrictive. As we shall see, in many
cases we can alow transactions to overlap their execution while maintaining
seriadizability. A number of different concurrency-control algorithms ensure
serializability. These algorithms are described below.

6.94.1 Serializability

Consider a system with two data items, A and B, that are both read and written
by two transactions, Ty and T:. Suppose that these transactions are executed
atomically in the order T, followed by T;. This execution sequence, which is
called aschedule, isrepresented in Figure 6.22. In schedule 1 of Figure 6.22, the
sequence of instruction stepsisin chronological order from top to bottom, with
instructions of Ty appearing in the left columnand instructions of T; appearing
in the right column.

A schedule in which each transaction is executed atomically is called
a serial schedule. A serial schedule consists of a sequence of instructions
from various transactions wherein the instructions belonging to a particular
transaction appear together. Thus, for a set of n transactions, there exist n\
different valid serial schedules. Each serial schedule is correct, because it is
equivalent to the atomic execution of the various participating transactions in
some arbitrary order.

If we allow the two transactions to overlap their execution, then the result-
ing schedule is no longer serial. A nonserial schedule does not necessarily
imply an incorrect execution (that is, an execution that is not equivalent to one
represented by a serial schedule). To see that thisis the case, we need to define
the notion of conflicting operations.

Consider a schedule S in which there are two consecutive operations O;
and O; of transactions T; and Tj, respectively. We say that O; and Oj conflict if
they access the same data item and at least one of them is a write operation.
To illustrate the concept of conflicting operations, we consider the nonserial

Tn : T,

read(A) |

write(A)

read(B)

write(B)
read(A)
write(A)
read(B)
write(B)

Figure 6.22 Schedule 1: A serial schedule in which 7, is followed by 7.
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read(A) |
write(A)
read(A)
write(A)
read(B)
write(B)
read(B)
write(B)

Figure 6.23 Schedule 2: A concurrent serializable schedule.

schedule 2 of Figure 6.23. The write(A) operation of T, conflicts with the
read(A) operation of T;. However, the write(A) operation of T; does not
conflict with the read(B) operation of T;, because the two operations access
different data items.

Let Oj and Oj be consecutive operations of aschedule S. If O; and O; are
operations of different transactionsand O; and O; do not conflict, then we can
swap the order of O; and 0/ to produce anew schedule S. We expect Sto be
equivalent to S, as all operations appear in the same order in both schedules,
except for O; and Oj, whose order does not matter.

We can illustrate the swapping idea by considering again schedule 2 of
Figure 6.23. Asthewrite(A) operation of T; does not conflict with the read(B)
operation of To, we can swap these operations to generate an equivalent
schedule. Regardless of the initial system state, both schedules produce
the same final system state. Continuing with this procedure of swapping
nonconflicting operations, we get:

» Swap the read(B) operation of T, with the read(A) operation of T\.
* Swap thewrite(B) operation of T, with thewrite(A) operation of T;.
» Swap thewrite(B) operation of T, with the read(A) operation of T;.

The final result of these swaps is schedule 1 in Figure 6.22, which is a
serial schedule. Thus, we have shown that schedule 2 is equivalent to a serial
schedule. Thisresultimpliesthat, regardless of theinitial system state, schedule
2 will produce the same fina state as will some serial schedule.

If a schedule S can be transformed into a serial schedule S by a series of
swaps of nonconflicting operations, we say that a schedule S is conflict serial-
izable. Thus, schedule 2 is conflict serializable, because it can be transformed
into the serial schedule 1.

6.94.2 Locking Protocol

One way to ensure serializability is to associate with each data item a lock and
to require that each transaction follow a locking protocol that governs how
locks are acquired and released. There are various modes in which a data item
can be locked. In this section, we restrict our attention to two modes:
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¢ Shared. If atransaction T; has obtained a shared-mode lock (deno'fed by
S) ondataitem Q, then T; can read thisitem but cannot write Q.

* Exclusive. If atransaction 7, has obtained an exclusive-mode lock (denoted
by X) on dataitem @, then T; can both read and write Q.

We require that every transaction request a lock in an appropriate mode on
data item Q, depending on the type of operations it will perform on Q.

To access dataitem Q, transaction 7} must first lock Q in the appropriate
mode. If Q is not currently locked, then the lock is granted, and T; can now
access it. However, if the data item Q is currently locked by some other
transaction, then 7) may havetowait. More specifically, supposethat 7} requests
an exclusivelock on Q). Inthis case, 7] must wait until the lock on Q is released.
If T; requestsashared lock on Q, then 7) must wait if Q islocked in exclusive
mode. Otherwise, it can obtain the lock and access Q. Notice that this scheme
is quite similar to the readers-writers algorithm discussed in Section 6.6.2.

A transaction may unlock a data item that it locked at an earlier point.
It must, however, hold a lock on a data item as long as it accesses that item.
Moreover, it is not always desirable for a transaction to unlock a data item
immediately after its last access of that data item, because serializability may
not be ensured.

One protocol that ensures serializability is the two-phase locking protocol.
This protocol requires that each transaction issue lock and unlock requests in
two phases:

* Growing phase. A transaction may obtain locks but may not release any
lock.

» Shrinking phase. A transaction may release locks but may not obtain any
new locks.

Initidly, a transaction is in the growing phase. The transaction acquires
locks as needed. Once the transaction releases a lock, it enters the shrinking
phase, and no more lock requests can be issued.

The two-phase locking protocol ensures conflict serializability (Exercise
6.25). It does not, however, ensure freedom from deadlock. In addition, it
is possible that, for a given set of transactions, there are conflict-serializable
schedules that cannot be obtained by use of the two-phase locking protocol.
However, to improve performance over two-phase locking, we need either to
have additional information about the transactions or to impose some structure
or ordering on the set of data.

6.94.3 Timestamp-Based Protocols

In the locking protocols described above, the order followed by pairs of -
conflicting transactions is determined at execution time by the first lock that
both request and that involves incompatible modes. Another method for
determining the serializability order is to select an order in advance. The most
common method for doing so is to use a timestamp ordering scheme.

With each transaction T; in the system, we associate a unique fixed
timestamp, denoted by TS(T;). This timestamp is assigned by the system
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before the transaction 7; starts execution. If atransaction 7} has been aéigned
timestamp TS(T;), and later a new transaction 7) enters the system, then TS(T;)
< TS(T;). There are two simple methods for implementing this scheme:

* Use the value of the system clock as the timestamp; that is, a transaction's
timestamp is equal to the value of the clock when the transaction enters the
system. This method will not work for transactions that occur on separate
systems or for processors that do not share a clock.

* Usealogica counter as the timestamp; that is, a transaction's timestamp
isequal to the value of the counter when the transaction enters the system.
The counter is incremented after a new timestamp is assigned.

The timestamps of the transactions determine the serializability order.
Thus, if TS(T;) < TY(T,), then the system must ensure that the produced
schedule is equivalent to a serial schedule in which transaction T, appears
before transaction T;.

To implement this scheme, we associate with each data item Q two
timestamp values:

* W-timestamp(()) denotes the largest timestamp of any transaction that
successfully executed write((Q).

* R-timestamp(Q)) denotes the largest timestamp of any transaction that
successfully executed read(Q).

These timestamps are updated whenever a new read(Q) or write(Q) instruc-
tion is executed.

The timestamp-ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order. This protocol operates as
follows:

* Suppose that transaction T; issuesread(Q):

o If TS(T;) < W-timestamp(), then T; needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and T; is
rolled back.

o If TS(T;) > W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T;).

* Suppose that transaction 7; issueswrite(Q):

o If TYT,) < R-timestamp(Q), then the value of Q that 7} is producing
was needed previously and T; assumed that this value would never be
produced. Hence, thewrite operation isrejected, and 7} isrolled back.

o If TS(T;) < W-timestamp(Q), then T, is attempting to write an obsol ete
value of Q. Hence, thiswrite operationisrejected, and T, isrolled back.

> Otherwise, the write operation is executed.

A transaction T; that isrolled back as aresult of the issuing of either aread or
write operation is assigned a new timestamp and is restarted.
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L 1;
read(B) !
i read(B)
write(B)
read(A)
read(A)
write{A)

Figure 6.24 Schedule 3: A schedule possible under the timestamp protocol.

To illustrate this protocol, consider schedule 3 of Figure 6.24, which
includes transactions T> and T;. We assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus, in schedule 3, TS(T3)
< TS(Ts), and the schedule is possible under the timestamp protocol.

This execution can also be produced by the two-phase locking protocol.
However, some schedules are possible under the two-phase locking protocol
but not under the timestamp protocol, and vice versa.

The timestamp protocol ensures conflict serializability. This capability
follows from the fact that conflicting operations are processed in timestamp
order. The protocol also ensures freedomfrom deadlock, because no transaction
ever waits.

Summary

Given a collection of cooperating sequential processes that share data, mutual
exclusion must be provided. One solution is to ensure that a critical section of
codeisin useby only one process or thread at atime. Different algorithms exist
for solving the critical-section problem, with the assumption that only storage
interlock is available.

The main disadvantage of these user-coded solutionsisthat they all require
busy waiting. Semaphores overcome this difficulty. Semaphores can be used
to solve various synchronization problems and can be implemented efficiently,
especialy if hardware support for atomic operations is available.

Various synchronization problems (such as the bounded-buffer problem,
the readers-writers problem, and the dining-philosophers problem) are impor-
tant mainly because they are examples of a large class of concurrency-control
problems. These problems are used to test nearly every newly proposed
synchronization scheme.

The operating system must provide the means to guard against timing
errors. Several language constructs have been proposed to deal with these prob-
lems. Monitors provide the synchronization mechanism for sharing abstract
data types. A condition variable provides a method by which a monitor
procedure can block its execution until it is signaled to continue.

Operating systems also provide support for synchronization. For example,
Solaris, Windows XP, and Linux provide mechanisms such as semaphores,
mutexes, spinlocks, and condition variables to control access to shared data.
The Pthreads AR provides support for mutexes and condition variables.
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A transaction is a program unit that must be executed atomically; that
is, either all the operations associated with it are executed to completion, or
none are performed. To ensure atomicity despite system failure, we can use a
write-ahead log. All updates are recorded on the log, which is kept in stable
storage. If asystem crash occurs, the information in the log is used in restoring
the state of the updated data items, which is accomplished by use of the undo
and redo operations. To reduce the overhead in searching thelog after asystem
failure has occurred, we can use a checkpoint scheme.

To ensure seridizability when the execution of severa transactions over-
laps, we must use a concurrency-control scheme. Various concurrency-control
schemes ensure seridizability by delaying an operation or aborting the trans-
action that issued the operation. The most commeon ones are locking protocols
and timestamp ordering schemes.

Exercises

6.1 Thefirg known correct software solution to the critical-section problem
for two processes was devel oped by Dekker. The two processes, 7 and
Py, share the following variables:

boolean flagl2]; /* initially false */
int turn;

The structure of process P, (i ==0o0r 1) isshowninFigure 6.25; the other
processis P; (j == 1 or 0). Prove that the algorithm satisfies dl three
requirements for the critical-section problem.

do {
flag[i] = TRUE;

while (flag[j]) {
if (turn = §) {

flag[i] = false;

while (turn == j)
// do not hing

flag{i] = TRUE;

}
}

/1 critical section

turn = 5;
flag[i] = FALSE;

/! remainder section
}while (TRUE);

Figure 6.25 The structure of process £ in Dekker's algorithm.
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do {
while (TRUB {
flag[i] = want.in;
j = turn;
while (j '=1i) {
if (flag[j] '=ide) {
j = turn;
el se
I =30 +1) %n;
}
flag[i] = in.cs;
I =06
while ( § <n & ( == i || flag[j] !'= in_cs) )
J++;
if ( § >=n) & ({urn == i | flag[turn] == idle) )
break;

/1 critical section
j = (turn +1) %n;

while (flag[j] == idle)
i =30 +1) %n;

turn = 3J;
flag(i] = idle;

/1 remai nder section

Ywhile(TRUB) ,-

Figure 6.26 The structure of process F in Eisenberg and McGuire’s algorithm.

6.2 Thefirg known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n — 1 turns was
presented by Eisenberg and McGuire. The processes share the following
variables:

enum pstate {idle, want in, in cs};
pstate flag[n];
int turn;

All the dements of f1agare initidly idle; theinitia value of turnis
immaterial (between 0 and n-1). The structure of process P; isshownin
Figure 6.26. Prove that the algorithm satisfies dl three requirements for
the critical-section problem.
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What is the meaning of the term busy 'waiting? What other kifds of
waiting are there in an operating system? Can busy waiting be avoided
altogether? Explain your answer.

Explain why spinlocks are not appropriate for single-processor systems
yet are often used in multiprocessor systems.

Explain why implementing synchronization primitives by disabling
interrupts is not appropriate in a single-processor system if the syn-
chronization primitives are to be used in user-level programs.

Explain why interrupts are not appropriate for implementing synchro-
nization primitives in multiprocessor systems.

Describe how the Swap () instruction can be used to provide mutual
exclusion that satisfies the bounded-waiting requirement.

Servers can be designed to limit the number of open connections. For
example, a server may wish to have only N socket connections at any
point in time. As soon as N connections are made, the server will
not accept another incoming connection until an existing connection
is released. Explain how semaphores can be used by a server to limit the
number of concurrent connections.

Show that, if the wait () and signal() semaphore operations are not
executed atomically, then mutual excluson may be violated.

Show how to implement the wait () and signal () semaphore opera-
tions in multiprocessor environments using the TestAndSet () instruc-
tion. The solution should exhibit minimal busy waiting.

The Sleeping-Bar ber Problem. A barbershop consists of awaiting room
with n chairs and a barber room with one barber chair. If there are no
customers to be served, the barber goes to deep. If a customer enters
the barbershop and all chairs are occupied, then the customer leaves the
shop. If the barber isbusy but chairs are available, then the customer sits
in one of the free chairs. If the barber is asleep, the customer wakes up
the barber. Write a program to coordinate the barber and the customers.

Demonstrate that monitors and semaphores are equivalent insofar as
they can be used to implement the same types of synchronization
problems.

Write a bounded-buffer monitor in which the buffers (portions) are
embedded within the monitor itself.

The strict mutual exclusion within a monitor makes the bounded-buffer
monitor of Exercise 6.13 mainly suitable for small portions.

a Explain why thisis true.
b. Design a new scheme that is suitable for larger portions.
Discuss the tradeoff between fairness and throughput of operations

in the readers—writers problem. Propose a method for solving the
readers-writers problem without causing starvation.
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6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25
6.26

How does the signal() operation associated with monitors différ from
the corresponding operation defined for semaphores?

Suppose the signal() statement can appear only as the last statement
in a monitor procedure. Suggest how the implementation described in
Section 6.7 can be simplified.

Consider asystem consisting of processes Py, P, ..., P,, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

A file is to be shared among different processes, each of which has
a unique number. The file can be accessed simultaneously by several
processes, subject to the following constraint: The sum of al unique
numbers associated with all the processes currently accessing the file
must be less than n. Write a monitor to coordinate access to the file.

When asignal is performed on acondition inside a monitor, the signaling
process can either continue its execution or transfer control to the process
that is signaled. How would the solution to the preceding exercise differ
with the two different ways in which signaling can be performed?

Suppose we replace the wait() and signal() operations of moni-
tors with a single construct await (B), where B is a general Boolean
expression that causes the process executing it to wait until B becomes
true.
a. Write a monitor using this scheme to implement the readers-
writers problem.

b. Explain why, in genera, this construct cannot be implemented
efficiently.

c. What restrictions need to be put on the await statement so that
it can be implemented efficiently? (Hint: Restrict the generality of
B; seeKessdls[1977].)

Write a monitor that implements an alarm clock that enables a calling
program to delay itsdf for a specified number of time units (ticks).
You may assume the existence of a rea hardware clock that invokes
a procedure tick in your monitor at regular intervals.

Why do Solaris, Linux, and Windows 2000 use spinlocks as a syn-
chronization mechanism only on multiprocessor systems and not on
single-processor systems?

In log-based systems that provide support for transactions, updates to
data items cannot be performed before the corresponding entries are
logged. Why is this restriction necessary? :

Show that the two-phase locking protocol ensures conflict serializability.

What are the implications of assigning anew timestamp to a transaction
that is rolled back? How does the system process transactions that were
issued after the rolled-back transaction but that have timestamps smaller
than the new timestamp of the rolled-back transaction?
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6.27 Assume that a finite number of resources of a single resource typg must
be managed. Processes may ask for a number of these resources and
—once finished —will return them. As an example, many commercia
software packages provide a given number of licenses, indicating the
number of applications that may run concurrently When the application
is started, the license count is decremented. When the application is
terminated, the license count is incremented. If dl licenses are in use,
requests to start the application are denied. Such requests will only be
granted when an existing license holder terminates the application and
alicenseisreturned.

The following program segment is used to manage a finite number of
instances of an available resource. The maximum number of resources
and the number of available resources are declared as follows:

#define MAX_RESOURCES 5
int available_resources = MAX_RESOURCES;

When a process wishes to obtain a number of resources, it invokes the
decrease_count () function:

/* decrease available resources by count resources */
/* return O if sufficient resources available, */
/* otherwise return -1 */
int decrease_count(int count) {
if (available_resources < count)
return -1;
else {
available_resources -= count,;

return O;

}
}

When a process wants to return a number of resources, it cdls the
decrease_count() function:

/* increase available resources by count */
int increase_count(int count) {
available _resources += count;

return O;

}

The preceding program segment produces a race condition. Do the
following:

a. ldentify the data involved in the race condition.

b. Identify the location (or locations) in the code where the race
condition occurs.

c. Using a semaphore, fix the race condition.
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628 The decrease.count() function in the previous exercise currently
returns O if sufficient resources are available and -1 otherwise. This leads
to awkward programming for a process that wishes obtain a number of
resources:

while (decrease_count(count) == -1)

Rewrite the resource-manager code segment using a monitor and
condition variables so that the decrease_count() function suspends
the process until sufficient resources are available. This will alow a
process to invoke decrease_count () by simply calling

decrease_count (count) ;

The process will only return from this function call when sufficient
resources are available.

Project: Producer-Consumer Problem

In Section 6.6.1, we present a semaphore-based solution to the producer-
consumer problem using a bounded buffer. In this project, we will design a
programming solution to the bounded-buffer problem using the producer and
consumer processes shown in Figures 6.10 and 6.11. The solution presented in
Section 6.6.1 uses three semaphores: empty and full,which count the number
of empty and full dots in the buffer, and mutex, which is a binary (or mutual
exclusion) semaphore that protects the actual insertion or removal of items
in the buffer. For this project, standard counting semaphores will be used for
empty and full, and, rather than a binary semaphore, a mutex lock will be
used to represent mutex. The producer and consumer—running as separate
threads—will move items to and from a buffer that is synchronized with these
empty, full, and mutex structures. You can solve this problem using either
Pthreads or the Win32 AR.

The Buffer

Internally, the buffer will consist of a fixed-size array of type buffer_item
(which will be defined using a typef def). The array of buffer_item objects
will be manipulated as a circular queue. The definition of buf f er_item, along
with the size of the buffer, can be stored in a header file such as the following:

/* buffer.h */
typedef int buffer_item;
#define BUFFER SZE 5

The buffer will be manipulated with two functions, insert_item() and
remove_item(), which are called by the producer and consumer threads,
respectively. A skeleton outlining these functions appears as.
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#include <buffer.h> R

/* the buffer */
buffer_item buffer [BUFFER SIZE] ;

int insert_item(buffer_item iten) {
/* insert iteminto buffer
return O if successful, otherw se
return -1 indicating an error condition */

}

int remove_item(buffer item *item) {
/* remove an object from buffer
placing it in item
return O if successful, otherwise
return -1 indicating an error condition */

}

The insert_item() and remove_item() functions will synchronize the pro-
ducer and consumer using the algorithms outlined in Figures 6.10 and 6.11.
The buffer will aso require an initialization function that initiaizes the mutual -
excluson object mutex aong with the empty and fullsemaphores.

The main() function will initialize the buffer and create the separate
producer and consumer threads. Once it has created the producer and
consumer threads, the main() function will deep for a period of time and,
upon awakening, will terminate the application. Themain () function will be
passed three parameters on the command line:

1. How long to deep before terminating
2. The number of producer threads
3. The number of consumer threads

A skdeton for this function appears as.

#include <buffer.h>

int main{int argc, char *argv[]) {

/* 1. Gt commad line arguments argv([l], argv[2], argv[3] */
/* 2. Initialize buffer */

/* 3. Create producer thread(s) */

/* 4. Create consumer thread(s) =/

/* 5. Sleep */

/* 6. Exit */

}

Producer and Consumer Threads

The producer thread will aternate between deeping for a random period of
time and inserting a random integer into the buffer. Random numbers will
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be produced using the rand() function, which produces random iritegers
between 0 and RANDJAAX. The consumer will aso deep for a random period
of time and, upon awakening, will attempt to remove an item from the buffer.
An outline of the producer and consumer threads appears as.

#include <stdlib.h> /* required for rand() */
#include <buffer.h>

void *producer(void *param) {
buffer_item rand;

while (TRUE) {
/* sleep for a randomperiod of tine */
sleep(...);
/* generate a random nunber */
rand = rand();
printf ("producer produced %f \n",rand);
if (insert_item(rand))
fprintf ("report error condition");

}

void *consumer (void *param) {
buffer item rand;

while (TRUE) {
/* sleep for a randomperiod of time */
sleep(...);
if (remove_item(&rand))
fprintf ("report error condition");
else
printf ("consumer consumed %£\n" ,rand) ;

In the following sections, we first cover details specific to Pthreads and then
describe details of the Win32 ARL.

Pthreads Thread Creation

Creating threads using the Pthreads AR is discussed in Chapter 4. Please refer
to that chapter for specific instructions regarding creation of the producer and
consumer using Pthreads.

Pthreads Mutex Locks

The following code sampleillustrates how mutex locks available in the Pthread |
AR can be used to protect a critical section:
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#include <pthread.h> 3
pthread mutex_t mutex;

/* create the mutex lock =*/
pthread mutex_init (&mutex,NULL);

/* acquire the mutex lock */
pthread mutex lock(&mutex) ;

/**x critical section ***/

/* release the mutex lock */
pthread_mutex_unlock(&mutex) ;

Pthreads uses the pthread mutex_t data type for mutex locks. A
mutex is created with the pthread mutex init (&mutex,NULL) function,
with the firsd parameter being a pointer to the mutex. By passing NULL
as a second parameter, we initialize the mutex to its default attributes.
The mutex is acquired and released with the pthread mutex_lock() and
pthread mutex_unlock () functions. If the mutex lock is unavailable when
pthread_mutex_lock() is invoked, the calling thread is blocked until the
owner invokes pthread mutex unlock (). All mutex functions return avalue
of O with correct operation; if an error occurs, these functions return anonzero
error code.

Pthreads Semaphores

Pthreads provides two types of semaphores—named and unnamed. For this
project, we use unnamed semaphores. The code below illustrates how a
semaphore is created:

#include <semaphore.h>
sem_t sem;

/* Create the semaphore and initialize it to 5 */
sem_init(&sem, 0, 5);

Thesem_init() createsandinitializesa semaphore. Thisfunctionispassed
three parameters:

1. A pointer to the semaphore
2. A flag indicating the level of sharing

3. The semaphore'sinitial value

In this example, by passing the flag O, we are indicating that this semaphore
can only be shared by threads belonging to the same process that created
the semaphore. A nonzero value would allow other processes to access the
semaphore aswell. In this example, we initialize the semaphore to the value 5.
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In Section 6.5, we described the classical wait () and signal() semaphore
operations. Pthreads names thewait () and signal() operations sem_wait ()
and sem_post(), respectively. The code example below creates a binary
semaphore mutex with aninitial value of 1 and illustrates its use in protecting
acritical section:

#include <semaphore.h>
sem_t sem MUtex;

/* create the semaphore */
sem_init (&mutex, 0, 1);

[* acquire the semaphore =/
sem_wait (&mutex) :

[*** critical section ***/

/* release the semaphore */
sem post (&mutex) ;

Win32

Details concerning thread creation using theWin32 AR are availablein Chapter
4. Please refer to that chapter for specific instructions.

Win32 Mutex Locks

Mutex locks are a type of dispatcher object, as described in Section 6.8.2. The
following illustrates how to create a mutex lock using the CreateMutex ()
function:

#include <windows.h>

HANDLE Mit ex;
Mit ex = CreateMutex(NULL, FALSE, NULL);

The first parameter refers to a security attribute for the mutex lock. By setting
this attribute to NULL, we are disallowing any children of the process creating
this mutex lock to inherit the handle of the mutex. The second parameter
indicates whether the creator of the mutex is the initial owner of the mutex
lock. Passing a value of FALSE indicates that the thread creating the mutex is
not theinitial owner; we shall soon see how mutex locks are acquired. The third
parameter allows naming of the mutex. However, because we provide a value
of NULL, we do not name the mutex. If successful, CreateMutex () returnsa_
HANDLE to the mutex lock; otherwise, it returns NULL.

In Section 6.8.2, we identified dispatcher objects as being either signaled
or nonsignaled. A signaled object is available for ownership; once a dispatcher
object (such as a mutex lock) is acquired, it moves to the nonsignaled state.
When the object is released, it returns to signaled.
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Mutex locks are acquired by invoking the WaitForSingleObjectO func-
tion, passing the function the HANDLE to the lock and aflag indicating how long
to wait. The following code demonstrates how the mutex lock created above
can be acquired:

WaitForSingleObject (Mutex, | NFI NI TE);

The parameter value INFINITE indicates that we will wait an infinite amount
of time for the lock to become available. Other values could be used that would
alow the calling thread to time out if the lock did not become available within
a specified time. If the lock isin a signaled state, WaitForSingleObject ()
returns immediately, and the lock becomes nonsignaled. A lock is released
(moves to the nonsignaled state) by invoking ReleaseMutex (), such as:

ReleaseMutex (Mutex) ;

Win32 Semaphores

Semaphores in the Win32 AR are also dispatcher objects and thus use the same
signaling mechanism as mutex locks. Semaphores are created as follows:

#include <windows.h>

HANDLE Sem;
Sem = CreateSemaphore (NULL, 1, 5, NULL);

The first and last parameters identify a security attribute and a name for
the semaphore, similar to what was described for mutex locks. The second
and third parameters indicate the initial value and maximum value of the
semaphore. In this instance, the initial value of the semaphore is 1, and its
maximum value is 5. If successful, CreateSemaphore() returns a HANDLE to
the mutex lock; otherwise, it returns NULL.

Semaphores are acquired with the same WaitForSingleObject () func-
tion as mutex locks. We acquire the semaphore Sam created in this example by
using the statement:

WaitForSingleObject (Semaphore, | NFI NI TE) ;

If the value of the semaphore is > 0, the semaphore is in the signaled state
and thus is acquired by the calling thread. Otherwise, the calling thread blocks
indefinitely—as we are specifying INFINITE—until the semaphore becomes
signaled.

The equivalent of the signal() operation on Win32 semaphores is the
ReleaseSemaphore () function. This function is passed three parameters: (1)
the HANDLE of the semaphore, (2) the amount by which to increase the value
of the semaphore, and (3) a pointer to the previous value of the semaphore. We -
can increase Sam by 1 using the following statement:

ReleaseSemaphore(Sem, 1, NULL);

Both ReleaseSemaphore() and ReleaseMutexO return O if successful and
nonzero otherwise.
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1ocks

In a multiprogramming environment, several processes may compete for a
finite number of resources. A process requests resources, and if the resources
are not available at that time, the process enters a waiting state. Sometimes,
a waiting process is never again able to change state, because the resources
it has requested are held by other waiting processes. This situation is called
a deadlock. We discussed this issue briefly in Chapter 6 in connection with
semaphores.

Perhaps the best illustration of a deadlock can be drawn from a law passed
by the Kansas legislature early in the 20th century. It said, in part: "When two
trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.”

In this chapter, we describe methods that an operating system can use to
prevent or deal with deadlocks. Most current operating systems do not provide
deadlock-prevention facilities, but such features will probably be added soon.
Deadlock problems can only become more common, given current trends,
including larger numbers of processes, multithreaded programs, many more
resources within a system, and an emphasis on long-lived file and database
servers rather than batch systems.

CHAPTER OBJECTIVES

» To develop a description of deadlocks, which prevent sets of concurrent
processes from completing their tasks

* To present a number of different methods for preventing or avoiding
deadlocks in a computer system.

System Model

A system consists of a finite number of resources to be distributed among
a number of competing processes. The resources are partitioned into severa
types, each consisting of some number of identical instances. Memory space,
CPU cycles, files, and [ /O devices (such asprintersand DVD drives) are examples
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of resource types. If a system has two CPUs, then the resource type CPU has
two instances. Similarly, the resource typeprinter may have five instances.

If a process requests an instance of a resource type, the allocation of any
instance of the type will satisfy the request. If it will not, then the instances are
not identical, and the resource type classes have not been defined properly. For
example, asystem may have two printers. These two printers may be defined to
be in the same resource class if no one cares which printer prints which output.
However, if one printer is on the ninth floor and the other is in the basement,
then people on the ninth floor may not see both printers as equivalent, and
separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the
resource after using it. A process may reguest as many resources as it requires
to carry out its designated task. Obviously, the number of resources regquested
may not exceed the total number of resources available in the system. In other
words, a process cannot request three printers if the system has only two.

Under the normal mode of operation, a process may utilize a resource in
only the following sequence:

1. Request. If therequest cannot be granted immediately (for example, if the
resource is being used by another process), then the requesting process
must wait until it can acquire the resource.

2. Use, The process can operate on the resource (for example, if the resource
is a printer, the process can print on the printer).

3. Release. The process releases the resource.

The request and release of resources are system cals, as explained in
Chapter 2. Examples are the request() and release() device, open() and
close() file, and allocate () and free() memory system calls. Request and
release of resources that are not managed by the operating system can be
accomplished through the wait () and signal() operations on semaphores
or through acquisition and release of a mutex lock. For each use of a kernel-
managed resource by a process or thread, the operating system checks to
make sure that the process has requested and has been allocated the resource.
A system table records whether each resource is free or allocated; for each
resource that is alocated, the table aso records the process to which it is
allocated. If a process requests a resource that is currently allocated to another
process, it can be added to a queue of processes waiting for this resource.

A set of processes is in a deadlock state when every process in the set is
waiting for an event that can be caused only by another process in the set. The
events with which we are mainly concerned here are resource acquisition and
release. The resources may be either physical resources (for example, printers,
tape drives, memory space, and CPU cycles) or logical resources (for example,
files, semaphores, and monitors). However, other types of events may result in
deadlocks (for example, the (PC facilities discussed in Chapter 3).

Toillustrate a deadlock state, consider a system with three CD RNV drives.
Suppose each of three processes holds one of these CD RW drives. If each
process now requests another drive, the three processes will be in a deadlock
state. Each is waiting for the event "CD RN is released," which can be caused
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only by one of the other waiting processes. This example illustrates a deadlock
involving the same resource type.

Deadlocks may also involve different resource types. For example, consider
asystem with one printer and one DVD drive. Suppose that process P: isholding
the DVD and process P; is holding the printer. If ; requests the printer and P,
requests the DVD drive, a deadlock occurs.

A programmer who is developing multithreaded applications must pay
particular attention to this problem. Multithreaded programs are good candi-
dates for deadlock because multiple threads can. compete for shared resources.

Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied
up, preventing other jobs from starting. Before we discuss the various methods
for dealing with the deadlock problem, we look more closely at features that
characterize deadlocks.

7.2.1 Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-
ously in a system:

1. Mutual exclusion. At least one resource must be held in a nonsharable
mode; that is, only one process at a time can use the resource. If another
process requests that resource, the requesting process must be delayed
until the resource has been released.

DEADLOCK WITH MUTEX LOCKS

Let's see how deadlock can :oecur in a multithreaded Pthread program
using mutex locks. The pthread mutex init() funchion initializes
an unlocked mutex. Mutex locks are- acquired -and released using
pthread muvez. lock() . and  pthreadmutexiunlock(), ~respec
tively, If a thread attempts to acquire a. locked mudes, the . call taX.
pt%read ‘mizex Lock() blocks the thread until the owner of the o mie
leck invokes pthiead mutex nnlock (.

Two mutex-locks are created intthe following code example:.

/% Create and initialize the muterx locks #/
pthread mutex t | ivst gutex;
pthreadimutex t second.mutex;

othréadauter-init (&t irstputer MULL) w2 80 0
vthread mutex init(&second. mutex ,NULL);

Next, two threads—thread. one and thread. two—are created, and bath
these threads have access to both mutex locks, thirgac. oneand thread.tvo
run in the functions do.work.one () and do.wark twe (), respectively, as
shownin Figure 7.1.



24S Chapter 7 Deadlocks

DEADLOCK WITH MUTEX LOCKS (Cont.) ’
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2. Hold and wait. A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held by
other processes.

3. No preemption. Resources cannot be preempted.; that is, a resource can

be released only voluntarily by the process holding it, after that process
has completed its task.
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4. Circular wait. A set { P;, Pi, ..., P,} of waiting processes must exist such
that [%, iswaiting for aresource held by P;, P, iswaiting for a resource
held by P, ..., P,_. is waiting for aresource held by P,, and P,, is waiting
for a resource held by P

We emphasize that al four conditions must hold for a deadlock to
occur. The circular-wait condition implies the hold-and-wait condition, so the
four conditions are not completely independent. We shall see in Section 7.4,
however, that it is useful to consider each condition separately

7.2.2 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called
a system resour ce-allocation graph. This graph consists of a set of vertices V
and a set of edges E. The set of vertices V is partitioned into two different types
of nodes: P- { P, I, ..., P,}, the set consisting of al the active processes in the
system, and R = {R[, Rz, ..., R,,}, the set consisting of al resource typesin the
system.

A directed edge from process P:; to resource type Rj isdenoted by P; — R ;;
it signifies that process P, has requested an instance of resource type R; and
is currently waiting for that resource. A directed edge from resource type R
to process /; is denoted by R; — P,; it signifies that an instance of resource
type R; has been allocated to process ;. A directed edge P, — R; iscalleda
request edge; a directed edge R; — P, iscaled an assignment edge.

Pictorially, we represent each process P; as a circle and each resource type
Ri as arectangle. Since resource type R, may have more than one instance, we
represent each such instance as a dot within the rectangle. Note that a request
edge points to only the rectangle R;, whereas an assignment edge must also
designate one of the dotsin the rectangle.

When process P; requests an instance of resource type R;, a request edge
is inserted in the resource-allocation graph. When this request can be fulfilled,
the request edge is instantaneously transformed to an assignment edge. When
the process no longer needs access to the resource, it releases the resource; as a
result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.2 depicts the following
situation.

* ThesetsP, R and £:

0 P={P, Py, P}

o R={Ry, Rs, Ry, Ry}

OE=1IP— Ry ,P, + Ry, R - Pp,Ro— Py, Ro > P-ss Ry — P}
* Resource instances:

< One instance of resource type K;

o Two instances of resource type R

2 One instance of resource type K3

> Threeinstances of resourcetype R:.
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Figure 7.2 Resource-allocation graph.

* Process states:

o Process P\ is holding an instance of resource type R» and iswaiting for
an instance of resource type R;.

= Process P; is holding an instance of Ry and an instance of R; and is
waiting for an instance of R3.

o Process P; isholding aninstance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if
the graph contains no cycles, then no process in the system is deadlocked. If
the graph does contain a cycle, then a deadlock may exigt.

If each resource type has exactly one instance, then a cycle implies that a
deadlock has occurred. If the cycle involves only a set of resource types, each
of which has only a single instance, then a deadlock has occurred. Each process
involved in the cycle is deadlocked. In this case, a cycle in the graph is both a
necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily
imply that a deadlock has occurred. In this case, a cycle in the graph is a
necessary but not a sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph
depicted in Figure 7.2. Suppose that process 5 requests an instance of resource
type R». Since no resourceinstanceis currently available, arequest edge > —
R; is added to the graph (Figure 7.3). At this point, two minimal cycles exist in
the svstem:

Ppb— Ri— Pr— Ri—~ = R—~ H

Pg-—#‘ Rf:,-** P’; —_ R:—} P_‘_)

Processes P\, I’;, and P- are deadlocked. Process % is waiting for the resource
R3, which is held by process P3. Process P; is waiting for either process P\ or
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Figure 7.3 Resource-allocation graph with a deadlock.

process P; to release resource R,. In addition, process P; is waiting for process
P, torelease resource R;.

Now consider the resource-allocation graph in Figure 7.4. In this example,
we also have a cycle

Pp—- R - Pi— Ry — P

However, thereis no deadlock. Observe that process P, may releaseitsinstance
of resource type R.. That resource can then be allocated to P;, breaking thecycle.

In summary, if a resource-allocation graph does not have a cycle, then the
system is not in a deadlocked state. If there is a cycle, then the system may or
may not be in a deadlocked state. This observation isimportant when we deal
with the deadlock problem.
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Figure 7.4 Resource-allocation graph with a cycle but no deadlock.
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Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three
ways:

* We can use a protocol to prevent or avoid deadlocks, ensuring that the
system will never enter a deadlock state.

* We can allow the system to enter a deadlock state, detect it, and recover.

* We can ignore the problem altogether and pretend that deadlocks never
occur in the system.

The third solution is the one used by most operating systems, including UNTX
and Windows; it is then up to the application developer to write programs that
handle deadlocks.

Next, we elaborate briefly on each of the three methods for handling
deadlocks. Then, in Sections 7.4 through 7.7, we present detailed algorithms.
However, before proceeding, we should mention that some researchers have
argued that none of the basic approaches alone is appropriate for the entire
spectrum of resource-allocation problems in operating systems. The basic
approaches can be combined, however, alowing us to select an optimal
approach for each class of resources in a system.

To ensure that deadlocks never occur, the system can use either a deadl ock-
prevention or a deadlock-avoidance scheme. Deadlock prevention provides
a set of methods for ensuring that at least one of the necessary conditions
(Section 7.2.1) cannot hold. These methods prevent deadlocks by constraining
how requests for resources can be made. We discuss these methods in Section
74.

Deadlock avoidance requires that the operating system be given in
advance additional information concerning which resources a process will
request and use during its lifetime. With this additional knowledge, it can
decide for each request whether or not the process should wait. To decide
whether the current request can be satisfied or must be delayed, the system
must consider the resources currently available, the resources currently allo-
cated to each process, and the future requests and releases of each process. We
discuss these schemes in Section 7.5.

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadlock situation may arise. In this environment,
the system can provide an algorithm that examines the state of the system to
determine whether a deadlock has occurred and an algorithm to recover from
the deadlock (if a deadlock has indeed occurred). We discuss these issues in
Section 7.6 and Section 7.7.

If a system neither ensures that a deadlock will never occur nor provides
a mechanism for deadlock detection and recovery, then we may arrive at
a situation where the system is in a deadlocked state yet has no way of
recognizing what has happened. In this case, the undetected deadlock will
result in deterioration of the system's performance, because resources are being
held by processes that cannot run and because more and more processes, as
they make requests for resources, will enter a deadlocked state. Eventually, the
system will stop functioning and will need to be restarted manually.
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Although thismethod may not seem to be a viable approach to the deadl ock
problem, it is nevertheless used in most operating systems, as mentioned
earlier. In many systems, deadlocks occur infrequently (say, once per year);
thus, this method is cheaper than the prevention, avoidance, or detection and
recovery methods, which must be used constantly Also, in some circumstances,
asystem isin afrozen state but not in a deadlocked state. We see this situation,
for example, with a real-time process running at the highest priority (or any
process running on a nonpreemptive scheduler) and never returning control
to the operating system. The system must have manual recovery methods for
such conditions and may simply use those techniques for deadlock recovery.

Deadlock Prevention

Aswe noted in Section 7.2.1, for a deadlock to occur, each of the four necessary
conditions must hold. By ensuring that at least one of these conditions cannot
hold, we can prevent the occurrence of a deadlock. We elaborate on this
approach by examining each of the four necessary conditions separately.

7.4.1 Mutual Exclusion

The mutual-exclusion condition must hold for nonsharable resources. For
example, a printer cannot be simultaneously shared by several processes.
Sharable resources, in contrast, do not require mutually exclusive access and
thus cannot be involved in a deadlock. Read-only files are a good example of
a sharable resource. If several processes attempt to open a read-only file at the
same time, they can be granted simultaneous access to the file. A process never
needs to wait for a sharable resource. In general, however, we cannot prevent
deadlocks by denying the mutual-exclusion condition, because some resources
are intrinsically nonsharable,

7.4.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must
guarantee that, whenever a process requests a resource, it does not hold any
other resources. One protocol that can be used requires each process to request
and be allocated all its resources before it begins execution. We can implement
this provision by requiring that system calls requesting resources for a process
precede al other system calls.

An alternative protocol allows a process to request resources only when it
has none. A process may request some resources and use them. Before it can
request any additional resources, however, it must release all the resources that
it is currently allocated.

To illustrate the difference between these two protocols, we consider a
process that copies data from a DVD drive to a file on disk, sorts the file, and
then prints the results to a printer. If al resources must be requested at the
beginning of the process, then the process must initially request the DVD drive,
disk file, and printer. It will hold the printer for its entire execution, even though
it needs the printer only at the end.

The second method allows the process to request initially only the DVD
drive and disk file. It copies from the DVD drive to the disk and then releases
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both the DVD drive and the disk file. The process must then again request the
disk file and the printer. After copying the disk file to the printer, it releases
these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utiliza-
tion may be low, since resources may be allocated but unused for along period.
In the example given, for instance, we can release the DVD drive and disk file,
and then again request the disk file and printer, only if we can be sure that our
data will remain on the disk file. If we cannot be assured that they will, then
we must request al resources at the beginning for both protocols.

Second, starvation is possible. A process that needs several popular
resources may have to wait indefinitely, because at least one of the resources
that it needs is always alocated to some other process.

7.4.3 No Preemption

The third necessary condition for deadlocks is that there be no preemption
of resources that have already been allocated. To ensure that this condition
does not hold, we can use the following protocol. If a process is holding some
resources and requests another resource that cannot be immediately allocated
to it (that is, the process must wait), then all resources currently being held
are preempted. In other words, these resources are implicitly released. The
preempted resources are added to the list of resources for which the process is
waiting. The process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

Alternatively, if a process requests some resources, we first check whether
they are available. If they are, we allocate them. If they are not, we check
whether they are alocated to some other process that is waiting for additional
resources. If so, we preempt the desired resources from the waiting process and
alocate them to the requesting process. If the resources are neither available
nor held by a waiting process, the requesting process must wait. While it is
waiting, some of its resources may be preempted, but only if another process
reguests them. A process can be restarted only when it is allocated the new
resources it is requesting and recovers any resources that were preempted
while it was waiting.

This protocol is often applied to resources whose state can be easily saved
and restored later, such as CPU registers and memory space. It cannot generally
be applied to such resources as printers and tape drives.

7.4.4 Circular Wait

The fourth and fina condition for deadlocks is the circular-wait condition. One
way to ensure that this condition never holdsis to impose a total ordering of
al resource types and to require that each process requests resources in an
increasing order of enumeration.

To illustrate, we let R = {R\, R;, ..., R, } be the set of resource types. We
assign to each resource type a unique integer number, which allows us to
compare two resources and to determine whether one precedes another in our
ordering. Formally, we define a one-to-one function F: R— N, where N isthe
set of natural numbers. For example, if the set of resource types R includes
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tape drives, disk drives, and printers, then the function F might be defined as
follows:

F(tape drive) = 1
F(di.skdrive) =5
F (printer) =12

We can now consider the following protocol to prevent deadlocks: Each
process can request resources only in an increasing order of enumeration. That
IS, a process can initially request any number of instances of aresource type—
say, R;. After that, the process can request instances of resource type R; if and
only if F(R;) > F(R,). If several instances of the same resource type are needed,
asingle request for all of them must be issued. For example, using the function
defined previously, a process that wants to use the tape drive and printer at
the same time must first request the tape drive and then request the printer.
Alternatively, we can require that, whenever a process requests an instance of
resourcetype R, it has released any resources R such that £(R;) > F(R)).

If these two protocols are used, then the circular-wait condition cannot
hold. We can demonstrate this fact by assuming that a circular wait exists
(proof by contradiction). Let the set of processesinvolved in the circular wait be
{PQ, P\...., P}, where P. iswaiting for aresource R;, which isheld by process
Piy1. (Modulo arithmetic is used on the indexes, so that P, is waiting for
a resource R, held by Py.) Then, since process P, is holding resource R;
while requesting resource R;;;, we must have F(R,) < F(R;;1), for al i. But
this condition means that F{Ry) < F(Ry) < ee¢ < KR,) < F(Ryp). By transitivity,
F(Ry) < F(Ry), which isimpossible. Therefore, there can be no circular wait.

We can accomplish this scheme in an application program by developing
an ordering among all synchronization objects in the system. All requests for
synchronization objects must be made in increasing order. For example, if the
lock ordering in the Pthread program shown in Figure 7.1 was

F(first mutex)=1
F(second mutex)=5

then thread two could not request the locks out of order.

Keep in mind that developing an ordering, or hierarchy, in itsef does not
prevent deadlock. It is up to application developers to write programs that
follow the ordering. Also note that the function F should be defined according
to the normal order of usage of the resourcesin a system. For example, because
the tape drive is usually needed before the printer, it would be reasonable to
define F(tape drive) <F(printer).

Although ensuring that resources are acquired in the proper order is the
responsibility of application developers, certain software can be used to verify
that locks are acquired in the proper order and to give appropriate warnings
when locks are acquired out of order and deadlock is possible. One lock-order
verifier, which works on versions of UNIX such as FeB9D, is known as
witness. Withess uses mutual-exclusion locks to protect critical sections, as
described in Chapter 6; it works by dynamically maintaining the relationship
of lock orders in a system. Let's use the program shown in Figure 7.1 as an
example. Assumethat thread one isthe tirst to acquire the locks and doessoin
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the order (1) first mutex,(2) second mutex. Witness records the relationship
that firsgnutex must be acquired before second mutex. If thread.two later
acquires the locks out of order, witnhess generates a warning message on the
system console.

Deadiock Avoidance

Deadlock-prevention algorithms, as discussed in Section 7.4, prevent deadlocks
by restraining how requests can be made. The restraints ensure that at least
one of the necessary conditions for deadlock cannot occur and, hence, that
deadlocks cannot hold. Possible side effects of preventing deadlocks by this
method, however, are low device utilization and reduced system throughput.

An aternative method for avoiding deadlocks is to require additional
information about how resources are to be requested. For example, in a system
with one tape drive and one printer, the system might need to know that
process P will request first the tape drive and then the printer before releasing
both resources, whereas process Q will request first the printer and then the
tape drive. With this knowledge of the complete sequence of requests and
releases for each process, the system can decide for each request whether or
not the process should wait in order to avoid a possible future deadlock. Each
request requires that in making this decision the system consider the resources
currently available, the resources currently allocated to each process, and the
future réquests and releases of each process.

The various algorithms that use this approach differ in the amount and type
of information required. The simplest and most useful model requires that each
process declare the maximum number of resources of each type that it may need.
Given this a priori information, it is possible to construct an algorithm that
ensures that the system will never enter a deadlocked state. Such an algorithm
defines the deadlock-avoidance approach. A deadlock-avoidance algorithm
dynamically examines the resource-allocation state to ensure that a circular-
wait condition can never exist. The resource-allocation state is defined by the
number of available and allocated resources and the maximum demands of
the processes. In the following sections, we explore two deadlock-avoidance
algorithms.

7.5.1 Safe State

A state is safe if the system can allocate resources to each process (up to its
maximum) in some order and still avoid a deadlock. More formally, a system
isin a safe state only if there exists a safe sequence. A sequence of processes
<P\, P, .., P,> is a sdfe sequence for the current allocation state if, for each
P;, the resource requests that P, can still make can be satisfied by the currently .
available resources plus the resources held by al Pi, with /' <. Inthis situation,
if the resources that P, needs are not immediately available, then P; can wait
until &l P; have finished. When they have finished, P; can obtain al of its
needed resources, complete its designated task, return its allocated resources,
and terminate. When P; terminates, P;,; can obtain its needed resources, and
so on. If no such sequence exists, then the system state is said to be uisafe.
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deadlogck. .

Figure 7.5 Safe, unsafe, and deadlock state spaces.

A safe state is not a deadlocked state. Conversely, a deadlocked state is
an unsafe state. Not all unsafe states are deadlocks, however (Figure 7.5).
An unsafe state may lead to a deadlock. As long as the state is safe, the
operating system can avoid unsafe (and deadlocked) states. In an unsafe state,
the operating system cannot prevent processes from requesting resources such
that a deadlock occurs: The behavior of the processes controls unsafe states.

To illustrate, we consider a system with 12 magnetic tape drives and three
processes. I, P\, and P.. Process P, requires 10 tape drives, process ; may
need as many as 4 tape drives, and process P> may need up to 9 tape drives.
Suppose that, at time f, process P, is holding 5 tape drives, process Pj is
holding 2 tape drives, and process P; is holding 2 tape drives. (Thus, there are
3 free tape drives.)

Maximum Needs Current Needs

Po 10 5
P 4 2
P 9 2

At time fy, the system is in a safe state. The sequence < Py, Py, P>> satisfies
the safety condition. Process P; can immediately be allocated all its tape drives
and then return them (the system will then have 5 available tape drives); then
process F; can get al its tape drives and return them (the system will then have
10 available tape drives); and finally process P: can get all its tape drives and
return them (the system will then have al 12 tape drives available).

A system can go from a safe state to an unsafe state. Suppose that, at time
t\, process P. requests and is allocated one more tape drive. The system is no
longer in a safe state. At this point, only process P can be allocated all its tape. -
drives. When it returns them, the system will have only 4 available tape drives.
Since process ;; is allocated 5 tape drives but has a maximum of 10, it may
request 5 more tape drives. Since they are unavailable, process ) must wait.
Similarly, process P- may request an additional 6 tape drives and have to wait,
resulting in a deadlock. Our mistake was in granting the request from process
I» for one more tape drive. If we had made [ wait until either of the other
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processes had finished and released its resources, then we could have avoided
the deadlock.

Given the concept of a safe state, we can define avoidance algorithms that
ensure that the system will never deadlock. Theideais simply to ensure that the
system will always remain in a safe state. Initially, the system is in a safe state.
Whenever a process requests a resource that is currently available, the system
must decide whether the resource can be allocated immediately or whether
the process must wait. The request is granted only if the alocation leaves the
system in a safe state.

In this scheme, if a process requests a resource that is currently available,
it may till have to wait. Thus, resource utilization may be lower than it would
otherwise be.

7.5.2 Resource-Allocation-Graph Algorithm

If we have aresource-allocation system with only one instance of each resource
type, a variant of the resource-allocation graph defined in Section 7.2.2 can be
used for deadlock avoidance. In addition to the request and assignment edges
already described, we introduce a new type of edge, called a claim edge.
A claim edge P — R indicates that process P, may request resource R; at
some time in the future. This edge resembles a request edge in direction but is
represented in the graph by a dashed line. When process P: requests resource
Rj, the claim edge P — R; is converted to a request edge. Similarly, when a
resource R; is released by P] the assignment edge R; — P; is reconverted to
aclam edge P — R;. Wenote that the resources must be claimed a priori in
the system. That is, before process P; starts executing, all its claim edges must
already appear in the resource-allocation graph. We can relax this condition by
allowing a clam edge P. — R: to be added to the graph only if dl the edges
associated with process P; are claim edges.

Suppose that process P; requests resource Rj. The request can be granted
only if converting the request edge P, — R, to an assignment edge R; — P;
does not result in the formation of a cycle in the resource-allocation graph. Note
that we check for safety by using a cycle-detection algorithm. An algorithm for
detecting a cycle in this graph requires an order of 1 operations, where n is
the number of processes in the system.

If no cycle exists, then the alocation of the resource will leave the system
in a safe state. If a cycle is found, then the allocation will put the system in

Ay

Figure 7.6 Resource-allocation graph for deadlock avoidance.
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Figure 7.7 An unsafe state in a resource-allocation graph.

an unsafe state. Therefore, process P; will have to wait for its requests to be
satisfied.

To illustrate this algorithm, we consider the resource-allocation graph of
Figure 7.6. Suppose that P> requests R». Although R. is currently free, we
cannot allocate it to %, since this action will create a cycle in the graph (Figure
7.7). A cycle indicates that the system isin an unsafe state. If P; requests R,
and P; requests R\, then a deadlock will occur.

7.5.3 Banker's Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-
alocation system with multiple instances of each resource type. The deadlock-
avoidance algorithm that we describe next is applicable to such a system but
is less efficient than the resource-allocation graph scheme. This algorithm is
commonly known as the banker's algorithm. The name was chosen because the
algorithm could be used in a banking system to ensure that the bank never
allocated its available cash in such a way that it could no longer satisfy the
needs of all its customers.

When a new process enters the system, it must declare the maximum
number of instances of each resource type that it may need. This number may
not exceed the total number of resources in the system. When a user requests
a set of resources, the system must determine whether the allocation of these
resources will leave the system in a safe state. If it will, the resources are
allocated; otherwise, the process must wait until some other process releases
enough resources.

Severa data structures must be maintained to implement the banker's
algorithm. These data structures encode the state of the resource-allocation
system. Let n be the number of processes in the system and » be the number
of resource types. We need the following data structures:

» Available. A vector of length m indicates the number of available resources
of each type. If Auailable[j] equalsk, there are k instances of resource type
R; available.

* Max. An n x 1 matrix defines the maximum demand of each process.
If Max[i][/] equals k, then process P\ may request a most k instances of
resource type R;.
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« Allocation. Ann x sz matrix defines the number of resources of each type
currently allocated to each process. If Allecation[i]lj] equalsk, then process
P: iscurrently allocated k instances of resource type K;.

e Need. An n x i matrix indicates the remaining resource need of each
process. If Need[il{ji equalsk, thenprocess I; may need k more instances of
resource type R; to complete its task. Note that Need[i][j] equals Max|i]{/]
- Allocation[i][f].

These data structures vary over time in both size and value.

To simplify the presentation of the banker's algorithm, we next establish
some notation. Let X and Y be vectors of length n. We say that X < Y if and
only if X[i] < Y[i] fordl =1, 2, ..., n. For example, if X = (1,7,32) and Y =
(0321),thenY <X.Y <XifY<XandY ==X

We can treat each row in the matrices Allocation and Need as vectors
and refer to them as Allocation; and Need;. The vector Allocation, specifies
the resources currently allocated to process F;; the vector Need; specifies the
additional resources that process ’; may still request to compl ete its task.

7531 Safety Algorithm
We can now present the algorithm for finding out whether or not a system is
in a safe state. This algorithm can be described as follows:
1. Let Work and Finish be vectors of length /7 and n, respectively. Initialize
Work = Available and Firish]i{fdse for i —0,1, - 1.
2. Find an i such that both
a Finish[i] == false
b. Need.: < Work

If no such i exists, go to step 4.

3. Work = Work + Allocation;
Finish[i] = true
Go to step 2.

4. |If Finishli] —=+ruefor dl. i, then the system is in a sife state.

This algorithm may require an order ofm x 1i-operations to determine whether
a state is safe.

7532 Resource-Request Algorithm

We now describe the algorithm which determines if requests can be safely
granted.

LetRequest; betherequest vector for process P,. If Request,; [/] == Kk, then
process P, wants k instances of resource type R:. When a request for resources
is made by process P,, the following actions are taken:

1. If Request, < Need:, go to step 2. Otherwise, raise an error condition, since
the process has exceeded its maximum claim.
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2. If Request; < Available, go to step 3. Otherwise, P; must wait, since the
resources are not available.

3. Have the system pretend to have alocated the requested resources to
process P; by modifying the state as follows:

Available = Available - Request;;
Allocation-,= Allocation; + Request;;
Need; =Necd] - Request:;

If the resulting resource-allocation state is safe, the transaction is com-
pleted, and process P; is allocated its resources. However, if the new state
is unsafe, then P; must wait for Request;, and the old resource-allocation
state is restored.

7533 An lllustrative Example

Finaly, to illustrate the use of the banker's algorithm, consider a system with
five processes 1, through P, and three resource types A. B, and C. Resource
type A has 10 instances, resource type B has 5 instances, and resource type C
has 7 instances. Suppose that, at time T;, the following snapshot of the system
has been taken:

Allocation Max Available

ABC ABC ABC
Py 010 753 332
p, 200 322
P, 302 9 02
P, 211 222
Pi 002 433

The content of the matrix Need is defined to be Max — Allocation and is as
follows:

ABC
Py 743
P 122
P, 600
Py 011
P, 431

We claim that the system is currently in a safe state. Indeed, the sequence
<P\, P3, P, P, P> satisfies the safety criteria Suppose now that process
P} requests one additional instance of resource type A and two instances of
resource type C, so Request] = (1,0,2). To decide whether this request can be
immediately granted, we first check that Reguest) < Awvailoble—that is, that
(/02) < (3,3,2), which is true. We then pretend that this request has been
fulfilled, and we arrive at the following new state:
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Allocation  Need  Awailable
ABC ABC ABC

Py 010 743 230
P, 302 020
P 302 600
Ps 211 011
Pi 002 431

We must determine whether this new system state is safe. To do so, we
execute our safety algorithm and find that the sequence <P, 15, Py, P, P>
satisfies the safety requirement. Hence, we can immediately grant the request
of process P\.

You should be able to see, however, that when the system isin this state, a
request for (3,3,0) by P, cannot be granted, since the resources are not available.
Furthermore, a request for (0,2,0) by P, cannot be granted, even though the
resources are available, since the resulting state is unsafe.

We leave it as a programming exercise to implement the banker's algo-
rithm.

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-
avoidance algorithm, then a deadl ock situation may occur. In this environment,
the system must provide:

* An algorithm that examines the state of the system to determine whether
a deadlock has occurred

* Analgorithm to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they
pertain to systemswith only a single instance of each resource type, aswell asto
systemswith several instances of each resource type. At this point, however, we
note that a detection-and-recovery scheme requires overhead that includes not
only the run-time costs of maintaining the necessary information and executing
the detection algorithm but also the potential losses inherent in recovering from
a deadlock.

7.6.1 Single Instance of Each Resource Type

If al resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a variant of the resource-allocation graph, called
await-for graph. We obtain this graph from the resource-allocation graph by
removing the resource nodes and collapsing the appropriate edges.

More precisely, an edge from P; to P; in a wait-for graph implies that
process P; iswaiting for process P; to release a resource that ; needs. An edge
P, — P, existsin a wait-for graph if and only if the corresponding resource-
allocation graph contains two edges P, — R, and R, - P; for some resource
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Figure 7.8 (a) Resource-allocation graph. (b) Corresponding wait-for graph.

R,. For example, in Figure 7.8, we present a resource-allocation graph and. the
corresponding wait-for graph.

Asbefore, a deadlock existsin the system if and only if the wait-for graph
contains a cycle. To detect deadlocks, the system needs to maintain the wait-for
graph and periodically invokean algerit/im that searchesfor acyclein the graph.
An algorithm to detect a cycle in a graph requires an order of 1> operations,
where n is the number of vertices in the graph.

7.6.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system
with multiple instances of each resource type. We turn now to a deadlock-
detection algorithm that is applicable to such a system. The algorithm employs
several time-varying data structures that are similar to those used in the
banker's algorithm (Section 7.5.3):

» Available. A vector of length »: indicates thenumber of available resources
of each type.

» Allocation. An n x i matrix defines the number of resources of each type
currently allocated to each process.

* Request. An n x m matrix indicates the current request of each process.
If Request[i][j] equalsk, then process P; is requesting k more instances of
resource type Rj.

The <relation between two vectorsis defined asin Section 7.5.3. To smplify
notation, we again treat the rows in the matrices Allocation and Request as
vectors; we refer to them as Allocation; and Reguest;. The detection algorithm
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described here simply investigates every possible allocation sequence fér the
processes that remain to be completed. Compare this algorithm with the
banker's algorithm of Section 7.5.3.

1. Let Work and Finish be vectors of length i1 and 11, respectively. Initialize
Work - Available. For i =0, 1, ..., n-1, if Allocation, 0, then Finish[i] = false;
otherwise, Finish{il = true.

2. Find anindex i such that both
a Finish[i] == false
b. Reguest; < Work
If no suchi exists, go to step 4.

3. Work= Work + Allocation;
Finish[i] = true
Go to step 2.

4. ltfFinish[i] == false, for some/, 0 </ < n, thenthesystemisinadeadlocked
state. Moreover, if Finish[i] == false, then process/’; isdeadlocked.

This algorithm requires an order of m x n® operations to detect whether the
systemisin a deadlocked state.

You may wonder why we reclaim the resources of process P; (in step 3)
as soon as we determine that Request/ < Work (in step 2b). We know that P;
is currently not involved in adeadlock (since Request; < Work). Thus, we take
an optimistic attitude and assume that P:: will require no more resources to
complete its task; it will thus soon return al currently allocated resources to
the system. If our assumption is incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm is
invoked.

To illustrate this algorithm, we consider a system with five processes P
through P, and three resource types A, B, and C. Resource type A has seven
instances, resource type B has two instances, and resource type C has dx
instances. Suppose that, at time Ty, we have the following resource-allocation
state:

Allocation Request Available

ABC ABC ABC
P 010 000 000
P, 200 202
P 303 000
P 211 100
P 002 002

We claim that the system is not in a deadlocked state. Indeed, if we execute
our algorithm, we will find that the sequence <Pn, Pi, P, P;, Py> results in
Finish[i] ==true for all i.
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Suppose now that process P7: makes one additional request for an instance
of type C. The Request matrix is modified as follows:

Rellitest

A BC
Py 000
n 202
Ky oo1
P, 100
P, 002

We claim that the system is now deadlocked. Although we can reclaim the
resources held by process ), the number of available resources is not sufficient
to fulfill the requests of the other processes. Thus, a deadlock exists, consisting
of processes Py, P, P3, and Ps.

7.6.3 Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two
factors:

1. How often is adeadlock likely to occur?
2. How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked
frequently. Resources allocated to deadlocked processes will be idle until the
deadlock can be broken. In addition, the number of processes involved in the
deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot
be granted immediately. This request may be the find request that completes
a chain of waiting processes. In the extreme, we can invoke the deadlock-
detection algorithm every time a request for alocation cannot be granted
immediately. In this case, we can identify not only the deadlocked set of
processes but also the specific process that "caused” the deadlock. (In redlity,
each of the deadlocked processesis alink in the cycle in the resource graph, so
all of them, jointly, caused the deadlock.) If there are many different resource
types, one request may create many cycles in the resource graph, each cycle
completed by the most recent request and "caused" by the one identifiable
process.

Of courseg, if the deadl ock-detection algorithm is invoked for every resource
request, this will incur a considerable overhead in computation time. A less
expensive alternative is simply to invoke the algorithm at less frequent intervals
— for example, once per hour or whenever CPU utilization drops below 40
percent. (A deadlock eventually cripples system throughput and causes CRU
utilization to drop.) If the detection algorithm isinvoked at arbitrary points in
time, there may be many cycles in the resource graph. In this case, we would
generally not be able to tell which of the many deadlocked processes "caused"
the deadlock.
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Recovery From Deadlock

When a detection algorithm determines that a deadlock exists, severa alter-
natives are available. One possibility is to inform the operator that a deadlock
has occurred and to let the operator deal with the deadlock manually. Another
possibility is to let the system recover from the deadlock automatically. There
are two options for breaking a deadlock. One is simply to abort one or more
processes to break the circular wait. The other is to preempt some resources
from one or more of the deadlocked processes.

7.7.1 Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In
both methods, the system reclaims al resources allocated to the terminated
processes.

» Abort all deadlocked processes. This method clearly will break the
deadlock cycle, but at great expense; the deadlocked processes may have
computed for a long time, and the results of these partial computations
must be discarded and probably will have to be recomputed later.

» Abort one process at a time until the deadlock cycle is eliminated. This
method incurs considerable overhead, since, after each process is aborted,
a deadlock-detection algorithm must be invoked to determine whether
any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of
updating afile, terminating it will leave that file in an incorrect state. Similarly,
if the process was in the midst of printing data on a printer, the system must
reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which
deadlocked process (or processes) should be terminated. This determination is
apolicy decision, similar to CPU-scheduling decisions. The question isbasically
an economic one; we should abort those processes whose termination will incur
the minimum cost. Unfortunately, the term minimum cost is not a precise one.
Many factors may affect which process is chosen, including:

=

What the priority of the process is

N

How long the process has computed and how much longer the process
will compute before completing its designated task

w

How many and what type of resources the process has used (for example, -
whether the resources are simple to preempt)

o

How many more resources the process needs in order to complete

o1

How many processes will need to be terminated

S

Whether the process is interactive or batch
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7.7.2 Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt
some resources from processes and give these resources to other processes until
the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to
be addressed:

1. Selecting a victim. Which resources and which processes are to be
preempted? As in process termination, we must determine the order of
preemption to minimize cost. Cost factors may include such parameters
as the number of resources a deadlocked process is holding and the
amount of time the process has thus far consumed during its execution.

2. Rollback. If we preempt a resource from a process, what should be done
with that process? Clearly, it cannot continue with its normal execution; it
is missing some needed resource. We must roll back the process to some
safe state and restart it from that state.

Since, in general, it is difficult to determine what a safe state is, the
simplest solution is a total rollback: Abort the process and then restart
it. Although it is more effective to roll back the process only as far as
necessary to break the deadlock, this method requires the system to keep
more information about the state of al running processes.

3. Starvation. How do we ensure that starvation will not occur? That is,
how can we guarantee that resources will not always be preempted from
the same process?

In a system where victim selection is based primarily on cost factors,
it may happen that the same process is always picked as a victim. As
a result, this process never completes its designated task, a starvation
situation that must be dealt with in any practical system. Clearly, we
must ensure that a process can be picked as a victim only a (small) finite
number of times. The most common solution is to include the number of
rollbacks in the cost factor.

Summary

A deadlock state occurs when two or more processes are waiting indefinitely
for an event that can be caused only by one of the waiting processes. There are
three principal methods for dealing with deadlocks:

& Use some protocol to prevent or avoid deadlocks, ensuring that the system,
will never enter a deadlock state.
» Allow the system to enter a deadlock state, detect it, and then recover.

e Ignore the problem altogether and pretend that deadlocks never occur in
the system.

The third solution is the one used by most operating systems, including UNIX
and Windows.
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A deadlock can occur only if four necessary conditions hold simultaneously
in the system: mutual exclusion, hold and wait, no preemption, and circular
wait. To prevent deadlocks, we can ensure that at least one of the necessary
conditions never holds.

A method for avoiding deadlocks that is less stringent than the prevention
algorithms requires that the operating system have a priori information on
how each process will utilize system resources. The banker's algorithm, for
example, requires a priori information about the maximum number of each
resource class that may be requested by each process. Using this information,
we can define a deadlock-avoidance algorithm.

It a system does not employ a protocol to ensure that deadlocks will never
occur, then a detection-and-recovery scheme must be employed. A deadlock-
detection algorithm must be invoked to determine whether a deadlock
has occurred. If a deadlock is detected, the system must recover either by
terminating some of the deadlocked processes or by preempting resources
from some of the deadlocked processes.

Where preemption is used to deal with deadlocks, three issues must be
addressed: selecting a victim, rollback, and starvation. In a system that selects
victims for rollback primarily on the basis of cost factors, starvation may occur,
and the selected process can never complete its designated task.

Finaly, researchers have argued that none of the basic approaches alone
is appropriate for the entire spectrum of resource-allocation problems in
operating systems. The basic approaches can be combined, however, allowing
us to select an optimal approach for each class of resources in a system.

Exercises

7.1 Consider the traffic deadlock depicted in Figure 7.9.

a.  Show that the four necessary conditions for deadlock indeed hold
in this example.

b. State a simplerule for avoiding deadlocks in this system.

72 Consider the deadlock situation that could occur in the dining-
philosophers problem when the philosophers obtain the chopsticks
one at a time. Discuss how the four necessary conditions for deadlock
indeed hold in this setting. Discuss how deadlocks could be avoided by
eliminating any one of the four conditions.

7.3 A possible solution for preventing deadlocks is to have a single, higher-
order resource that must be requested before any other resource. For
example, if multiple threads attempt to access the synchronization

objects A+ « » E, deadlock is possible. (Such synchronization objects may . .

include mutexes, semaphores, condition variables, etc.) We can prevent
the deadlock by adding a sixth object F. Whenever a thread wants to
acquire the synchronization lock for any object A e e E, it must first
acquire the lock for object F. This solution is known as containment:
The locks for objects A - « « E are contained within the lock for object F.
Compare this scheme with the circular-wait scheme of Section 7.4.4.
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Figure 7.9 Traffic deadlock for Exercise 7.1.

74 Compare the circular-wait scheme with the various deadl ock-avoidance
schemes (like the banker's algorithm) with respect to the following
iSsues:

a  Runtime overheads
b. System throughput

75 In a real computer system, neither the resources available nor the
demands of processes for resources are consistent over long periods
(months). Resources break or are replaced, new processes come and
go, new resources are bought and added to the system. If deadlock is
controlled by the banker's algorithm, which of the following changes
can be made safely (without introducing the possibility of deadlock),
and under what circumstances?

a. Increase Available (new resources added).
b. Decrease Available (resource permanently removed from system).

c. Increase Max for one process (the process needs more resources
than allowed; it may want more).

d. Decrease Max for one process (the process decidesit doesnot need
that many resources).

e. Increase the number of processes.
f. Decrease the number of processes.

76 Consider a system consisting of four resources of the same type that are
shared by three processes, each of which needs at most two resources.
Show that the system is deadlock free,
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Consider a system consisting of m resources of the same type being
shared by # processes. Resources can be requested and released by
processes only one at a time. Show that the system is deadlock free
if the following two conditions hold:

a. The maximum need of each processisbetween 1 and i resources.
b. The sum of al maximum needs isless than i + n.

Consider the dining-philosophers problem where the chopsticks are
placed at the center of the table and any two of them could be used
by a philosopher. Assume that requests for chopsticks are made one
at a time. Describe a simple rule for determining whether a particular-
request could be satisfied without causing deadlock given the current
alocation of chopsticks to philosophers.

Consider the same setting as the previous problem. Assume now that
each philosopher requires three chopsticks to eat and that resource
requests are till issued separately. Describe some simple rules for deter-
mining whether a particular request could be satisfied without causing
deadlock given the current allocation of chopsticks to philosophers.

We can obtain the banker's algorithm for a single resource type from
the general banker's algorithm simply by reducing the dimensionality
of the various arrays by 1. Show through an example that the multiple-
resource-type banker's scheme cannot be implemented by individual
application of the single-resource-type scheme to each resource type.

Consider the following snapshot of a system:

Allpcation  Max ~ Available
A BCD ABCD A BCD
P, 0012 00 12 1520

Py 1000 1750
P, 1354 23 56
P 0632 0652
Py 00 14 06 56

Answer the following questions using the banker's algorithm:
a. What is the content of the matrix Need?
b. Isthe system in a safe state?

c. If arequest from process P, arrives for (0,4,2,0), can the request
be granted immediately?

What is the optimistic assumption made in the deadlock-detection
algorithm? How could this assumption be violated?

Write a multithreaded program that implements the banker's algorithm
discussed in Section 7.5.3. Create n threads that request and release
resources from the bank. The banker will grant the request only if it
leaves the system in a safe state. You may write this program using
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either Pthreads or Win32 threads. It is important that access to shared
data is safe from concurrent access. Such data can be safely accessed
using mutex locks, which are available in both the Pthreads and Win32
AP. Coverage of mutex locks in both of these libraries is described in
“producer—consumer problem™ project in Chapter 6.

714 A single-lane bridge connects the two Vermont villages of North
Tunbridge and South Tunbridge. Farmers in the two villages use this
bridge to deliver their produce to the neighboring town. The bridge can
become deadlocked if both a northbound and a southbound farmer get
on the bridge at the same time (Vermont farmers are stubborn and are
unable to back up.) Using semaphores, design an algorithm that prevents
deadlock. Initialy, do not be concerned about starvation (the situation
in which northbound farmers prevent southbound farmers from using
the bridge, or vice versa).

7.15 Modify your solution to Exercise 7.14 so that it is starvation-free.
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Part Three

The main purpose of a computer system is to execute programs. These
programs, together with the data they access, must be in main memory
(at least partially) during execution.

To improve both the utilization of the CPU and the speed of its
response to users, the computer must keep several processes in
memory. Many memory-management schemes exist, reflecting various
approaches, and the effectiveness of each algorithm depends on the
situation. Selection of a memory-management scheme for a system
depends on many factors, especially on the hardware design of the
system. Each algorithm requires its own hardware support.
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In Chapter 5, we showed how the CPU can be shared by a set of processes. As
aresult of CRU scheduling, we can improve both the utilization of the CPU and
the speed of the computer's response to its users. To realize this increase in
performance, however, we must keep several processes in memory; that is, we
must share memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to
paging and segmentation strategies. Each approach has its own advantages
and disadvantages. Selection of a memory-management method for a specific
system depends on many factors, especially 011 the hardware design of the
system. Aswe shall see, many algorithms require hardware support, although
recent designs have closely integrated the hardware and operating system.

CHAPTER OBJECTIVES

» To provide a detailed description of various ways of organizing memory
hardware.

» To discuss various memory-management techniques, including paging
and segmentation.

» To provide a detailed description of the Intel Pentium, which supports both
pure segmentation and segmentation with paging.

Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system,. Memory consists of a large array of words or bytes, each
with its own address. The CRU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-
tion from memory The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

275
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operands, results may be stored back in memory. The memory unit sees ortly a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or what
they are for (instructions or data). Accordingly, we can ignore oz a program
generates amemory address. We are interested only in the sequence of memory
addresses generated by the running program.

We begin our discussion by covering several issues that are pertinent to
the various techniques for managing memory. This includes an overview of
basic hardware issues, the binding of symbolic memory addresses to actual
physical addresses, and distinguishing between logical and physical addresses.
We conclude with a discussion of dynamically loading and linking code and
shared libraries. '

8.1.1 Basic Hardware

Main memory and the registers built into the processor itself are the only
storage that the CRU can access directly. There are machineinstructionsthat take
memory addresses as arguments, but none that take disk addresses. Therefore,
any instructions in execution, and any data being used by the instructions,
must be in one of these direct-access storage devices. If the data are not in
memory, they must be moved there before the CPL can operate on them.
Registers that are built into the CPU are generally accessible within one
cycle of the CRU clock. Most CPUs can decode instructions and perform simple
operations on register contents at the rate of one or more operations per
clock tick. The same cannot be said of main memory, which is accessed via
a transaction on the memory bus. Memory access may take many cycles of the
CRU clock to complete, in which case the processor normally needs to stall,
since it does not have the data required to complete the instruction that it
is executing. This situation is intolerable because of the frequency of memory
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Figure 8.1 A base and a limit register define a logical address space.
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accesses. Theremedy is to add fast memory between the CRU and main memory.
A memory buffer used to accommodate a speed differential, called a cache, is
described in Section 1.8.3.

Not only are we concerned with the relative speed of accessing physical
memory, but we also must ensure correct operation has to protect the operating
system from access by user processes and, in addition, to protect user processes
from one another. This protection must be provided by the hardware. It can be
implemented in several ways, as we shall see throughout the chapter. In this
section, we outline one possible implementation.

We first need to make sure that each process has a separate memory space.
To do this, we need the ability to determine the range of legal addresses that
the process may access and to ensure that the process can access only these
legal addresses. We can provide this protection by using two registers, usually
a base and a limit, as illustrated in Figure 8.1. The base register holds the
smallest legal physical memory address; the limit register specifies the size of
the range. For example, if the base register holds 300040 and limit register is
120900, then the program can legally access al addresses from 300040 through
420940 (inclusive).

Protection of memory space is accomplished by having the CRU hardware
compare even/ address generated in user mode with the registers. Any attempt
by a program executing in user mode to access operating-system memory or
other users' memory resultsin a trap to the operating system, which treats the
attempt as a fatal error (Figure 8.2). This scheme prevents a user program from
(accidentally or deliberately) modifying the code or data structures of either
the operating system or other users.

The base and limit registers can be loaded only by the operating system,
which uses a special privileged instruction. Since privileged instructions can
be executed only in kernel mode, and since only the operating system executes
in kernel mode, only the operating system can load the base and limit registers.
This scheme allows the operating system to change the value of the registers
but prevents user programs from changing the registers' contents.

The operating system, executing in kernel mode, is given unrestricted
access to both operating system and users' memory. This provision allows

.
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Figure 8.2 Hardware address protection with base and limit registers.
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the operating system to load users’ programs into users' memory, to dumip out
those programs in case of errors, to access and modify parameters of system
calls, and so on.

8.1.2 Address Binding

Usually, a program resides on a disk as abinary executable file. To be executed,
the program must be brought into memory and placed within a process.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The processes on the disk that
are waiting to be brought into memory for execution form the input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems alow a user process to reside in any part of the physical
memory. Thus, although the address space of the computer starts at 00000,
the first address of the user process need not be 00000. This approach affects
the addresses that the user program can use. In most cases, a user program
will go through severa steps—some of which may be optional—before being
executed (Figure 8.3). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
count). A compiler will typically bind these symbolic addresses to relocatable
addresses (such as "14 bytes from the beginning of this module"). The linkage
editor or loader will in turn bind the relocatable addresses to absolute addresses
(such as 74014). Each binding is a mapping from one address space to another.

Classically, the binding of instructions and data to memory addresses can
be done at any step along the way:

e Compile time. If you know at compile time where the process will reside
in memory, then absolute code can be generated. For example, if you know
that a user process will reside starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at
some later time, the starting location changes, then it will be necessary
to recompile this code. The MSDQOS .COM-fonna programs are bound at
compile time.

» Load time. If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. In this case,
fina binding is delayed until load time. If the starting address changes, we
need only reload the user code to incorporate this changed value.

» Execution time. If the process can be moved during its execution from
one memory segment to another, then binding must be delayed until run
time. Specia hardware must be available for this scheme to work, as will
be discussed in Section 8.1.3. Most general-purpose operating systems use
this method.

A major portion of this chapter is devoted to showing how these vari-
ous bindings can be implemented effectively in a computer system and to
discussing appropriate hardware support.
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Figure 8.3 Multistep processing of a user program.

8.1.3 Logical Versus Physical Address Space

An address generated by the CRU iscommonly referred to as a logical address,
whereas an address seen by the memory unit—that is, the one loaded into
the memory-address register of the memory—is commonly referred to as a
physical address.

The compile-time and load-time address-binding methods generate iden-
tica logical and physical addresses. However, the execution-time address-
binding scheme results in differing logical and physical addresses. In this case,
weusually refer tothelogical addressasavirtual address. Weuselogical address
and virtual address interchangeably in this text. The set of all logical addresses
generated by a program is a logical address space; the set of al physical
addresses corresponding to these logical addressesis aphysical address space.
Thus, in the execution-time address-binding scheme, the logical and physical
address spaces differ.

The run-time mapping from virtual to physical addresses is done by a
hardware device called the memory-management unit (MMU). We can choose
from many different methods to accomplish such mapping, as we discuss in
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Figure 8.4 Dynamic relocation using a relocation register.

Sections 8.3 through 8.7. For the time being, we illustrate this mapping with
a simple MMU scheme, which is a generalization of the base-register scheme
described in Section 8.1.1. The base register isnow called a relocation register.
The value in the relocation register is added to every address generated by a
user process at the time it is sent to memory (see Figure 84). For example,
if the base is at 14000, then an attempt by the user to address location O is
dynamically relocated to location 14000; an access to location 346 is mapped
to location 14346. The MSDOS operating system running on. the Intel 80x86
family of processors uses four relocation registers when loading and running
processes.

The user program never seesthe real physical addresses. The program can
create a pointer to location 346, storeit in memory, manipulateit, and compareit
with other addresses—all as the number 346. Only when it is used as amemory
address (in an indirect load or store, perhaps) isit relocated relativeto the base
register. The user program deals with logical addresses. The memory-mapping
hardware converts logical addresses into physical addresses. This form of
execution-time binding was discussed in Section 8.1.2. The fina location of
a referenced memory address is not determined until the reference is made.

We now have two different types of addresses: logica addresses (in the
range 0 to max) and physical addresses (in the range R + 0to R + max for abase
value R). The user generates only logical addresses and thinks that the process
runsin locations 0 to max. The user program supplies logical addresses; these
logical addresses must be mapped to physical addresses before they are used.

The concept of a logical address space that is bound to a separate physical
address spaceis central to proper memory management.

8.1.4 Dynamic Loading

in our discussion so far, the entire program and all data of a process must be in
physical memory for the process to execute. The size of a processisthus limited
to the size of physical memory. To obtain better memory-space utilization, we
can use dynamic loading. With dynamic loading, a routine is not loaded until
itiscaled. All routines are kept on disk in arelocatable load format. The main



81 Background 21

program is loaded inte memory and is executed. When a routine needs to
cal another routine, the calling routine first checks to see whether the other
routine has been loaded. If not, the relocatable linking loader is called to load
the desired routine into memory and to update the program's address tables
to reflect this change. Then control is passed to the newly loaded routine.

The advantage of dynamic loading is that an unused routine is never
loaded. This method is particularly useful when large amounts of code are
needed to handle infrequently occurring cases, such as error routines. In this
case, although the total program size may be large, the portion that is used
(and hence loaded) may be much smaller.

Dynamic loading does not require special support from the operating
system. It is the responsibility of the users to design their programs to take
advantage of such a method. Operating systems may help the programmer,
however, by providing library routines to implement dynamic loading.

8.1.5 Dynamic Linking and Shared Libraries

Figure 8.3 also shows dynamically linked libraries. Some operating systems
support only static linking, in which system language libraries are treated
like any other object module and are combined by the loader into the
binary program image. The concept of dynamic linking is similar to that of
dynamic loading. Here, though, linking, rather than loading, is postponed
until execution time. This feature is usually used with system libraries, such as
language subroutine libraries. Without this facility, each program on a system
must include a copy of its language library (or at'least the routines referenced
by the program) in the executable image. This requirement wastes both disk
space and main memory.

With dynamic linking, a stub is included in the image for each library-
routine reference. The stub is a small piece of code that indicates how to locate
the appropriate memory-resident library routine or how to load the library if
the routine is not already present. When the stub is executed, it checks to see
whether the needed routine is already in memory. If not, the program loads
the routine into memory. Either way, the stub replaces itself with the address
of the routine and executes the routine. Thus, the next time that particular
code segment is reached, the library routine is executed directly, incurring no
cost for dynamic linking. Under this scheme, all processes that use a language
library execute only one copy of the library code.

This feature can be extended to library updates (such as bug fixes). A
library may be replaced by a new version, and al programs that reference the
library will automatically use the new version. Without dynamic linking, all
such programs would need to be relinked to gain access to the new library.
So that programs will not accidentally execute new, incompatible versions of
libraries, version information is included in both the program and the library.
More than one version of a library may be loaded into memory, and each
program uses its version information to decide which copy of the library to
use. Minor changes retain the same version number, whereas major changes
increment the version number. Thus, only programs that are compiled with
the new library version are affected by the incompatible changes incorporated
init. Other programs linked before the new library was installed will continue
using the older library. This system is also known as shared libraries.
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Unlike dynamic loading, dynamic linking generally requires help from the
operating system. If the processes in memory are protected from one another,
then the operating system is the only entity that can check to see whether the
needed routine is in another process's memory space or that can allow multiple
processes to access the same memory addresses. We elaborate on this concept
when we discuss paging in Section 8.4.4.

Swapping

A process must be in memory to be executed. A process, however, can be
swapped temporarily out of memory to a backing store and then brought
back into memory for continued execution. For example, assume a multipro-
gramming environment with a round-robin CPU-scheduling algorithm. When
a gquantum expires, the memory manager will start to swap out the process that
just finished and to swap another process into the memory space that has been
freed (Figure 85). In the meantime, the CRU scheduler will allocate a time dlice
to some other process in memory. When each process finishes its quantum, it
will be swapped with another process. Ideally, the memory manager can swap
processes fast enough that some processes will be in memory, ready to execute,
when the CRU scheduler wants to reschedule the CPU. In addition, the quantum
must be large enough to allow reasonable amounts of computing to be done
between swaps.

A variant of this swapping policy is used for priority-based scheduling
algorithms. If ahigher-priority process arrives and wants service, the memory
manager can swap out the lower-priority process and then load and execute
the higher-priority process. When the higher-priority process finishes, the
lower-priority process can be swapped back in and continued. This variant
of swapping is sometimes called roll out, roll in.

uger
Space - .- -

backing store

main memory

Figure 8.5 Swapping of two processes using a disk as a backing store.
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Normally, a process that is swapped out will be swapped back into the
same memory space it occupied previously. This restriction is dictated by the
method of address binding. If binding is done at assembly or [oad time, then
the process cannot be easily moved to a different location. If execution-time
binding is being used, however, then a process can be swapped into a different
memory space, because the physical addresses are computed during execution
time.

Swapping requires a backing store. The backing store is commonly a fast
disk. It must be large enough to accommodate copies of al memory images
for all users, and it must provide direct access to these memory images. The
system maintains a ready queue consisting of all processes whose memory
images are on the backing store or in memory and are ready to run. Wlienever
the CFU scheduler decides to execute a process, it calls the dispatcher. The
dispatcher checks to see whether the next process in the queue is in memory.
If it is not, and if there is no free memory region, the dispatcher swaps out a
process currently in memory and swaps in the desired process. It then reloads
registers and transfers control to the selected process.

The context-switch time in such a swapping system is fairly high. To get an
idea of the context-switch time, let us assume that the user processis 10 MB in
size and the backing storeis a standard hard disk with a transfer rate of 40 MB
per second. The actual transfer of the 10-MB process to or from main memory
takes

10000 KB/40000 KB per second = 1/4 second
= 250 milliseconds.

Assuming that no head seeks are necessary, and assuming an average latency
of 8 milliseconds, the swap time is 258 milliseconds. Since we must both swap
out and swap in, the total swap time is about 516 milliseconds.

For efficient CRU utilization, we want the execution time for each process
to be long relative to the swap time. Thus, in a round-robin CPU-scheduling
algorithm, for example, the time quantum should be substantially larger than
0.516 seconds.

Notice that the major part of the swap time is transfer time. The total
transfer time is directly proportional to the amount of memory swapped. If
we have a computer system with 512 MB of main memory and a resident
operating system taking 25 MB, the maximum size of the user process is 487
MB. However, many user processes may be much smaller than this—say, 10
MB. A 10-MB process could be swapped out in 258 milliseconds, compared
with the 6.4 seconds required for swapping 256 MB. Clearly, it would be useful
to know exactly how much memory a user process is using, not simply how
much it might be using. Then we would need to swap only what is actually
used, reducing swap time. For this method to be effective, the user must keep
the system informed of any changes in memory requirements. Thus, a process
with dynamic memory requirements will need to issue system cals (request
memory and release memory) to inform the operating system of its changing
memory needs.

Swapping is constrained by other factors as well. If we want to swap
a process, we must be sure that it is completely idle. Of particular concern
is any pending 1/0. A process may be waiting for an 1/0 operation when
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we want to swap that process to free up memory. However, if the i/0 is
asynchronously accessing the user memory for 1/0 buffers, then the process
cannot be swapped. Assume that the 1/0 operation is queued because the
device is busy. If we were to swap out process P°; and swap in process F, the
I/0 operation might then attempt to use memory that now belongs to process
P>. There are two main solutions to this problem: Never swap a process with
pending 1/0, or execute 1/O operations only into operating-system buffers.
Transfers between operating-system buffers and process memory then occur
only when the process is swapped in.

The assumption, mentioned earlier, that swapping requires few, if any,
head seeks needs further explanation. We postpone discussing this issue until
Chapter 12, where secondary-storage structure is covered. Generally, swap
spaceis alocated as a chunk of disk, separate from the file system, so that its
useis as fast as possible.

Currently, standard swapping is used in few systems. 1t requires too
much swapping time and provides too little execution time to be areasonable
memory-management solution. Modified versions of swapping, however, are
found on many systems.

A modification of swapping is used in many versions of UNIX. Swapping is
normally disabled but will start if many processes are running and are using a
threshold amount of memory. Swapping is again halted when the load on the
systemis reduced. Memory management in UNIX is described fully in Sections
21.7 and A.6.

Early rCs—which lacked the sophistication to implement more advanced
memory-management methods-—ran multiple large processes by using a
modified version of swapping. A prime example is the Microsoft Windows
3.1 operating system, which supports concurrent execution of processes in
memory. If a new process is loaded and there is insufficient main memory,
an old process is swapped to disk. This operating system, however, does not
provide full swapping, because the user, rather than the scheduler, decides
when it is time to preempt one process for another. Any swapped-out process
remains swapped out (and not executing) until the user selects that process to
run. Subsequent versions of Microsoft operating systems take advantage of the
advanced MMU features now found in PCs. We explore such features in Section
84 and in Chapter 9, where we cover virtual memory.

Contiguous Memory Allocation

The main memory must accommodate both the operating system and the
various user processes. We therefore need to allocate the parts of the main
memory in the most efficient way possible. This section explains one common
method, contiguous memory allocation.

The memory is usually divided into two partitions: one for the resident
operating system and one for the user processes. We can place the operating
system in either low memory or high memory. The mgjor factor affecting this
decision is the location of the interrupt vector. Since the interrupt vector is
often in low memory, programmers usually place the operating system in
low memory as well. Thus, in this text, we discuss only the situation where
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the operating system resides in low memory. The development of the. other
situation is similar.

We usually want several user processes to reside in memory at the same
time. We therefore need to consider how to allocate available memory to the
processes that are in the input queue waiting to be brought into memory.
In this contiguous memory allocation, each process is contained in a single
contiguous section of memory.

8.3.1 Memory Mapping and Protection

Before discussing memory allocation further, we must discuss the issue of
memory mapping and protection. We can provide these features by using
a relocation register, as discussed in Section 8.1.3, with a limit register, as
discussed in Section 8.1.1. The relocation register contains the value of the
smallest physical address; the limit register contains the range of logical
addresses (for example, relocation = 100040 and limit = 74600). With relocation
and limit registers, each logical address must be less than the limit register; the
MMU maps the logical addressdynamically by adding the valuein the relocation
register. This mapped address is sent to memory (Figure 8.6).

When the CRU scheduler selects a process for execution, the dispatcher
loads the relocation and limit registers with the correct values as part of the
context switch. Because every address generated by the CPU is checked against
these registers, we can protect both the operating system and the other users
programs and data from being modified by this running process.

The relocation-register scheme provides an effective way to alow the
operating-system size to change dynamically. This flexibility is desirable in
many situations. For example, the operating system contains code and buffer
space for device drivers. If a device driver (or other operating-system service)
isnot commonly used, we do not want to keep the code and data in memory, as
we might be able to use that space for other purposes. Such code is sometimes
called transient operating-system code; it comes and goes as needed. Thus,
using this code changes the size of the operating system during program
execution.

limit relocation,
register- egiste
logical 4 physical
address / yes address
no
trap: addressing error

Figure 8.6 Hardware support for relocation and limit registers.
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8.3.2 Memory Allocation :

Now we are ready to turn to memory allocation. One of the simplest
methods for allocating memory is to divide memory into several fixed-sized
partitions. Each partition may contain exactly one process. Thus, the degree
of multiprogramming is bound by the number of partitions. In this multiple-
partition method, when a partition is free, a process is selected from the input
queue and is loaded into the free partition. When the process terminates, the
partition becomes available for another process. This method was originally
used by the IBM Os,/360 operating system (caled MFT); it is no longer in use.
The method described next is a generalization of the fixed-partition scheme
(called MvT); it is used primarily in batch environments. Many of the ideas
presented here are also applicable to a time-sharing environment in which
pure segmentation is used for memory management (Section 8.6).

In the fixed-partition scheme, the operating system keeps a table indicating
which parts of memory are available and which are occupied. Initialy, al
memory is available for user processes and is considered one large block of
available memory, ahole. When aprocess arrives and needs memory, we search
for ahole large enough for this process. If we find one, we allocate only as much
memory as is needed, keeping the rest available to satisfy future requests.

As processes enter the system, they are put into an input queue. The
operating system takes into account the memory requirements of each process
and the amount of available memory space in determining which processes are
allocated memory. When a process is allocated space, it isloaded into memory,
and it can then compete for the CPU. When a process terminates, it releases its
memory, which the operating system may then fill with another process from
the input queue.

At any given time, we have a list of available block sizes and the input
queue. The operating system can order the input queue according to a
scheduling algorithm. Memory is allocated to processes until, finaly, the
memory requirements of the next process cannot be satisfied—that is, no
available block of memory (or hole) is large enough to hold that process. The
operating system can then wait until alarge enough block is available, or it can
skip down the input queue to see whether the smaller memory requirements
of some other process can be met.

In general, at any given timewe have a set of holes of various sizes scattered
throughout memory. When a process arrives and needs memory, the system
searches the set for a hole that islarge enough for this process. If the hole is too
large, itis split into two parts. One part is allocated to the arriving process; the
other is returned to the set of holes. When a process terminates, it releases its
block of memory, which is then placed back in the set of holes. 1f the new hole
is adjacent to other holes, these adjacent holes are merged to form one larger
hole. At this point, the system may need to check whether there are processes
waiting for memory and whether this newly freed and recombined memory
could satisfy the demands of any of these waiting processes. o

This procedure is a particular instance of the general dynamic storage-
allocation problem, which concerns how to satisfy a request of size n from a
list of free holes. There are many solutions to this problem. The fir-fit, best-fit,
and wor st-fit strategies are the ones most commonly used to select a free hole
from the set of available holes.
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+ First fit. Allocate the first hole that is big enough. Searching can start either
a the beginning of the set of holes or where the previous firg-fit search
ended. We can stop searching as soon as we find a free hole that is large
enough.

* Best fit. Allocate the smallest hole that is big enough. We must search the
entire list, unless the list is ordered by size. This strategy produces the
smallest leftover hole.

* Worst fit. Allocate the largest hole. Again, we must search the entire list,
unless it is sorted by size. This strategy produces the largest leftover hole,
which may be more useful than the smaller leftover hole from a best-fit
approach.

Simulations have shown that both first fit and best fit are better than worst
fit in terms of decreasing time and storage utilization. Neither first fit nor best
fit is clearly better than the other in terms of storage utilization, but first fit is
generally faster.

8.3.3 Fragmentation

Both the first-fit and best-fit strategies for memory allocation suffer from
external fragmentation. As processes are loaded and removed from memory,
the free memory space is broken into little pieces. External fragmentation exists
when there is enough total memory space to satisfy a request, but the available
spaces are not contiguous; storage is fragmented into a large number of small
holes. This fragmentation problem can be severe. In the worst case, we could
have a block of free (or wasted) memory between every two processes. If all
these small pieces of memory were in one big free block instead, we might be
able to run several more processes.

Whether we are using the first-fit or best-fit strategy can affect the amount
of fragmentation. (First fit is better for some systems, whereas best fit is better
for others.) Another factor is which end of a free block is allocated. (Which is
the leftover piece—the one on the top or the one on the bottom?) No matter
which algorithm is used, external fragmentation will be a problem.

Depending on the total amount of memory storage and the average process
size, externa fragmentation may be a minor or a major problem. Statistical
analysis of firgt fit, for instance, reveals that, even with some optimization,
given N allocated blocks, another 0.5 N blocks will be lost to fragmentation.
That is, one-third of memory may be unusable! This property is known as the
50-percent rule.

Memory fragmentation can be internal as well as external. Consider a
multiple-partition allocation scheme with a hole of 18464 bytes. Suppose that
the next process requests 18462 bytes. If we allocate exactly the requested
block, we are Ieft with a hole of 2 bytes. The overhead to keep track of this
hole will be substantially larger than the hole itsdlf. The general approach
to avoiding this problem is to break the physical memory into fixed-sized
blocks and alocate memory in units based on block size. With this approach,
the memory allocated to a process may be dightly larger than the requested
memory. The difference between these two numbersis internal fragmentation
— memory that isinternal to a partition but is not being used.
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One solution to the problem of external fragmentation is compaction. The
godl is to shuffle the memory contents so as to place al free memory together
in one large block. Compaction is not always possible, however. If relocation
is static and is done at assembly or load time, compaction cannot be done;
compaction is possible only if relocation is dynamic and is done at execution
time. If addresses are relocated dynamically, relocation requires only moving
the program and data and then changing the base register to reflect the new
base address. When compaction is possible, we must determine its cost. The
simplest compaction algorithm is to move all processes toward one end of
memory; al holes move in the other direction, producing one large hole of
available memory. This scheme can be expensive.

Another possible solution to the external-fragmentation problem is to
permit the logica address space of the processes to be noncontiguous, thus
allowing a process to be alocated physical memory wherever the latter
is available. Two complementary techniques achieve this solution: paging
(Section 84) and segmentation (Section 8.6). These techniques can aso be
combined (Section 8.7).

Paging

Paging is a memory-management scheme that permits the physical address
space of a process to be noncontiguous. Paging avoids the considerable
problem of fitting memory chunks of varying sizes onto the backing store; most
memory-management schemes used before the introduction of paging suffered
from this problem. The problem arises because, when some code fragments or
data residing in main memory need to be swapped out, space must be found
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Figure 8.7 Paging hardware.
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on the backing store. The backing store also has the fragmentation problems
discussed in connection with main memory, except that access is much slower,
S0 compaction is impossible. Because of its advantages over earlier methods,
paging in its various forms is commonly used in. most operating systems.

Traditionally, support for paging has been handled by hardware. However,
recent designs have implemented paging by closely integrating the hardware
and operating system, especially on 64-bit microprocessors.

8.4.1 Basic Method

The basic method for implementing paging involves breaking physical mem-
ory into fixed-sized blocks called frames and breaking logical memory into
blocks of the same size called pages. When a process is to be executed, its
pages are loaded into any available memory frames from the backing store.
The backing store is divided into fixed-sized blocks that are of the same size as
the memory frames.

The hardware support for paging is illustrated in Figure 8.7. Every address
generated by the CPU is divided into two parts: a page number (p) and a
page offset (d). The page number is used as an index into a page table. The
page table contains the base address of each page in physical memory. This
base address is combined with the page offset to define the physical memory
address that is sent to the memory unit. The paging model of memory is shown
in Figure 8.8. )

The page size (like the frame size) is defined by the hardware. The size
of a page istypically a power of 2, varying between 512 bytes and 16 MB per
page, depending on the computer architecture. The selection of a power of 2
as a page size makes the translation of a logical address into a page number

frame
number
page 1 1| spage
page 2 21z
.page 3 page table 3{ page 2
logical 4| pagsils
memory S
5
6
7| ipageisi
physical
memory

Figure 8.8 Paging model of logical and physical memory.



Chapter 8 Main Memory

and page offset particularly easy. If the size of logical address space is 27, and
a page sizeis 2" addressing units (bytes or words), then the high-order m - n
bits of a logical address designate the page number, and the n low-order bits
designate the page offset. Thus, the logical address is as follows:

page number page offset

iH

where p is an index into the page table and d is the displacement within the
page.

As a concrete (although minuscule) example, consider the memory in
Figure 89. Using a page size of 4 bytes and a physical memory of 32 bytes (8
pages), we show how the user's view of memory can be mapped into physical
memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we
find that page 0 isin frame 5. Thus, logical address 0 maps to physical address
20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical address
23 (= (5 x 4)+ 3). Logica address 4 is page 1, offsat 0; according to the page
table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical
address 24 (= (6 x 4}+ 0). Logical address 13 maps to physical address 9.
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10 | k- 3 E -
1 3 page table p
12 1im. 12 ). .
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14| .-
15[

logical memory 16

n i

cogp o

24

EX-0. 1)

physical memory

Figure 8.9 Paging example for a 32-byte memory with 4-byte pages.
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You may have noticed that paging itself is a form of dynamic relocation.
Every logica address is bound by the paging hardware to some physical
address. Using paging issimilar to using a table of base (or relocation) registers,
one for each frame of memory.

When we use apaging scheme, we have no external fragmentation: An y free
frame can be allocated to a process that needs it. However, we may have some
internal fragmentation. Notice that frames are allocated as units. If the memory
requirements of a process do not happen to coincide with page boundaries,
the last frame allocated may not be completely full. For example, if page size
is 2,048 bytes, a process of 72,766 bytes would need 35 pages phis 1,086 bytes.
It would be allocated 36 frames, resulting in an internal fragmentation of 2,048
— 1,086 = 962 bytes. In the worst case, a process would need n pages plus 1
byte. It would be allocated n + 1 frames, resulting in an internal fragmentation
of almost an entire frame.

If process size isindependent of page size, we expect internal fragmentation
to average one-half page per process. This consideration suggests that small
page sizes are desirable. However, overhead is involved in each page-table
entry, and this overhead is reduced as the size of the pages increases. Also,
disk 1/0 is more efficient when the number of data being transferred is larger
(Chapter 12). Generally, page sizes have grown over time as processes, data
sets, and main memory have become larger. Today, pages typically are between
4 KB and 8 KB in size, and some systems support even larger page sizes. Some
CPUs and kernels even support multiple page sizes. For instance, Solaris uses
page sizes of 8 KB and 4 MB, depending on the data stored by the pages.
Researchers are now developing variable on-the-fly page-size support.

Usually, each page-table entry is 4 bytes long, but that size can vary as well.
A 32-hit entry can point to one of 2*? physical page frames. If frame sizeis4 KB,
then a system with 4-byte entries can address 2™ bytes (or 16 TB) of physical
memory.

When a process arrives in the system to be executed, its size, expressed
in pages, is examined. Each page of the process needs one frame. Thus, if the
process requires n pages, at least n frames must be available in memory. If n
frames are available, they are allocated to this arriving process. The first page
of the processis loaded into one of the allocated frames, and the frame number
is put in the page table for this process. The next page is loaded into another
frame, and its frame number is put into the page table, and so on (Figure 8.10).

An important aspect of paging is the clear separation between the user's
view of memory and the actual physical memory. The user program views
memory as one single space, containing only this one program. In fact, the user
program is scattered throughout physical memory, which aso holds other
programs. The difference between the user's view of memory and the actual
physical memory isreconciled by the address-translation hardware. Thelogical
addresses are translated into physical addresses. This mapping is hidden from
the user and is controlled by the operating system. Notice that the user process
by definition is unable to access memory it does not own. It has no way of
addressing memory outside of its page table, and the table includes only those
pages that the process owns.

Since the operating system is managing physical memory, it must be aware
of the alocation details of physical memory—which frames are allocated,
which frames are available, how many total frames there are, and so on. This
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Figure 8.10 Free frames (a) before allocation and (b) after allocation.

information is generally kept in a data structure caled a frame table. The frame
table has one entry for each physical page frame, indicating whether the latter
is free or alocated and, if it is allocated, to which page of which process or
processes.

In addition, the operating system must be aware that user processes operate
in user space, and al logical addresses must be mapped to produce physical
addresses. If a user makes a system cal (to do 1/0, for example) and provides
an address as a parameter (a buffer, for instance), that address must be mapped
to produce the correct physical address. The operating system maintains a copy
of the page table for each process, just as it maintains a copy of the instruction
counter and register contents. This copy is used to translate logical addresses to
physical addresses whenever the operating system must map a logical address
to a physical address manually. It is also used by the CRU dispatcher to define
the hardware page table when a process is to be allocated the CPU. Paging
therefore increases the context-switch time.

8.4.2 Hardware Support

Each operating system has its own methods for storing page tables. Most
allocate a page table for each process. A pointer to the page table is stored with
the other register values (like the instruction counter) in the process control
block. When the dispatcher is told to start a process, it must reload the user
registers and define the correct hardware page-table values from the stored -
user page table.

The hardware implementation of the page table can be done in several
ways. In the simplest case, the page table is implemented as a set of dedicated
registers. These registers should be built with very high-speed logic to make the
paging-address translation efficient. Every access to memory must go through
the paging map, so efficiency is a mgor consideration. The CRU dispatcher
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reloads these registers, just as it rel oads the other registers. Instructions t¢ load
or modify the page-table registers are, of course, privileged, so that only the
operating system can change the memory map. The DEC PDP-11 is an example
of such an architecture. The address consists of 16 bits, and the page size is 8
KB. The page table thus consists of eight entries that are kept in fast registers.

The use of registers for the page table is satisfactory if the page table is
reasonably small (for example, 256 entries). Most contemporary computers,
however, alow the page table to be very large (for example, 1 million entries).
For these machines, the use of fast registers to implement the page table is
not feasible. Rather, the page table is kept in main memory, and a page-table
base register (PTBR) points to the page table. Changing page tables requires
changing only this one register, substantially reducing context-switch time.

The problem with this approach is the time required to access a user
memory location. If we want to access location i, we must first index into
the page table, using the value in the PTBR offset by the page number for ch8/8.
This task requires a memory access. It provides us with the frame number,
which is combined with the page offset to produce the actual address. We
can then access the desired place in memory. With this scheme, two memory
accesses are needed to access a byte (one for the page-table entry, one for the
byte). Thus, memory access is slowed by a factor of 2. This delay would be
intolerable under most circumstances. We might as well resort to swapping!

The standard solution to this problem is to use a special, small, fast-
lookup hardware cache, caled a translation look-aside buffer (TLB). The TLB
is associative, high-speed memory. Each entry in the TLB consists of two parts:
a key (or tag) and a value. When the associative memory is presented with an
item, the item is compared with al keys simultaneously. If the item is found,
the corresponding value field is returned. The search is fast; the hardware,
however, is expensive. Typicaly, the number of entriesin a TLB is small, often
numbering between 64 and 1,024.

The TLB is used with page tables in the following way. The TLB contains
only a few of the page-table entries. When a logical address is generated by
the CPU, its page number is presented to the TLB. If the page number is found,
its frame number is immediately available and is used to access memory. The
whole task may take less than 10 percent longer than it would if an unmapped
memory reference were used.

If the page number is not in the TLB (known as a TLB miss), a memory
reference to the page table must be made. When the frame number is obtained,
we can use it to access memory (Figure 8.11). In addition, we add the page
number and frame number to the TLB, so that they will be found quickly on the
next reference. If the TLB is already full of entries, the operating system must
select one for replacement. Replacement policies range from least recently used
(LRU) to random. Furthermore, some TLBs alow entries to be wired down,
meaning that they cannot be removed from the TLB. Typically, TLB entries for
kernel code are wired down. '

Some TLBs store address-space identifiers (ASDs) in each TLB entry. An
ASD uniquely identifies each process and is used to provide address-space
protection for that process. When the TLB attempts to resolve virtual page
numbers, it ensures that the ASD for the currently running process matches the
ASD associated with the virtual page. If the ASDs do not match, the attempt is
treated asa TLB miss. In addition to providing address-space protection, an ASD
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Figure 8.11 Paging hardware with TLB.

allows the TLB to contain entries for several different processes simultaneously.
If the TLB does not support separate ASIDs, then every time a new page table
is selected (for instance, with each context switch), the TLB must be flushed
(or erased) to ensure that the next executing process does not use the wrong
translation information. Otherwise, the TLB could include old entries that
contain valid virtual addresses but have incorrect or invalid physical addresses
left over from the previous process.

The percentage of times that a particular page number is found inthe TLB is
called the hit ratio. An 80-percent hit ratio means that we find the desired page
number in the TLB 80 percent of the time. If it takes 20 nanoseconds to search
the TLB and 100 nanoseconds to access memory, then amapped-memory access
takes 120 nanoseconds when the page number isin the TLB. If wefal to find the
page number in the TLB (20 nanoseconds), then we must first access memory
for the page table and frame number (100 nanoseconds) and then access the
desired byte in memory (100 nanoseconds), for a total of 220 nanoseconds. To
find the effective memory-access time, we weight each case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
= 140 nanoseconds.

In this example, we suffer a 40-percent slowdown in memory-access time (from
100 to 140 nanoseconds).
For a 98-percent hit ratio, we have

effective accesstime = 0.98 x 120 + 0.02 x 220
= 122 nanoseconds.

This increased hit rate produces only a 22 percent slowdown in access time.
We will further explore the impact of the hit ratio on the TLB in Chapter 9.
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8.4.3 Protection

Memory protection in a paged environment is accomplished by protection bits
associated with each frame. Normally, these bits are kept in the page table.

One bit can define a page to be read-write or read-only. Every reference
to memory goes through the page table to find the correct frame number. At
the same time that the physical address is being computed, the protection bits
can be checked to verify that no writes are being made to a read-only page. An
attempt to write to a read-only page causes a hardware trap to the operating
system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection.
We can create hardware to provide read-only, read—write, or execute-only
protection; or, by providing separate protection bits for each kind of access, we
can alow any combination of these accesses. Illegal attempts will be trapped
to the operating system.

One additional bit is generally attached to each entry in the page table: a
valid-invalid bit. When this bit is set to "valid," the associated page is in the
process's logical address space and isthus alegal (or valid) page. When the bit
is set to“invalid,” the page is not in the process's logical address space. 1llegal
addresses are trapped by use of the valid-invalid bit. The operating system
sets this bit for each page to allow or disallow access to the page.

Suppose, for example, that in a system with a 14-bit address space (0 to
16383), we have a program that should use only addresses 0 to 10468. Given a
page size of 2 KB, we get the situation shown in Figure 8.12. Addresses in pages

0.
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page 0 \ f 3|:paged
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Figure 8.12 Valid (v) or invalid () bit in a page table.



Chapter 8 Main Memory

0,1, 2,3,4, and 5 are mapped normally through the page table. Any attemipt to
generate an address in pages 6 or 7, however, will find that the valid-invalid
bit is set to invalid, and the computer will trap to the operating system (invalid
page reference).

Notice that this scheme has created a problem. Because the program
extends to only address 10468, any reference beyond that address is illegal.
However, references to page 5 are classified as valid, so accesses to addresses
up to 12287 are valid. Only the addresses from 12288 to 16383 areinvalid. This
problem is aresult of the 2KB page size and reflects the internal fragmentation
of paging.

Rarely does a process use al its address range. In fact, many processes
use only a small fraction of the address space available to them. It would be
wasteful in these cases to create a page table with entries for every page in the
address range. Most of this table would be unused but would take up valuable
memory space. Some systems provide hardware, in the form of a page-table
length register (PTLR), to indicate the size of the page table. This value is
checked against every logical address to verify that the address is in the valid
range for the process. Failure of this test causes an error trap to the operating
system.

8.4.4 Shared Pages

An advantage of paging is the possibility of sharing common code. This con-
sideration is particularly important in a time-sharing environment. Consider a
system that supports 40 users, each of whom executes a text editor. If the text
editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to
support the 40 users. If the code is reentrant code (or pure code), however, it
can be shared, as shown in Figure 8.13. Here we see a three-page editor—each
page 50 KB in size (the large page size is used to simplify the figure)—being
shared among three processes. Each process has its own data page.

Reentrant code is non-self-modifying code; it never changes during execu-
tion. Thus, two or more processes can execute the same code at the same time.
Each process has its own copy of registers and data storage to hold the data for
the process's execution. The data for two different processes will, of course, be
different.

Only one copy of the editor need be kept in physical memory. Each user's
page table maps onto the same physical copy of the editor, but data pages are
mapped onto different frames. Thus, to support 40 users, we need only one
copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user.
The total space required is now 2150 KB instead of 8,000 KB—a significant
savings.

Other heavily used programs can also be shared —compilers, window
systems, run-time libraries, database systems, and so on. To be sharable, the -
code must be reentrant. The read-only nature of shared code should not be
left to the correctness of the code; the operating system should enforce this
property.

The sharing of memory among processes on a system is similar to the
sharing of the address space of a task by threads, described in Chapter 4.
Furthermore, recall that in Chapter 3 we described shared memory as a method



8,5

85 Structure of the Page Table 27

Hala page table
— for £, edl
process P. —
ed2
ed3 B
6| ed3
data 2 page table
for P, 7| dataz2
process P, -
3 .s:. 8 H
ed2
ed3
e - - 10|
data3 page table
for P,
process P,

Figure 8.13 Sharing of code in a paging environment.

of interprocess communication. Some operating systems implement shared
memory using shared pages.

Organizing memory according to pages provides numerous benefits in
addition to allowing several processes to share the same physical pages. We
will cover several other benefits in Chapter 9.

Structure of the Page Table

In this section, we explore some of the most common techniques for structuring
the page table.

8.5.1 Hierarchical Paging

Most modern computer systems support a large logica address space
(2*? to 2%). In such an environment, the page table itself becomes excessively
large. For example, consider a system with a 32-bit logical address space. If
the page size in such a system is 4 KB (2'%), then a page table may consist of
up to 1 million entries (2% /2'?). Assuming that each entry consists of 4 bytes,

each process may need up to 4 MB of physical address space for the page table N

alone. Clearly, we would not want to allocate the page table contiguously in
main memory. One simple solution to this problem is to divide the page table
into smaller pieces. We can accomplish this division in several ways.

One way is to use a two-level paging algorithm, in which the page table
itsdlf is also paged (Figure 8.14). Remember our example of a 32-bit machine
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with a page size of 4 KB. A logical address is divided into a page number
consisting of 20 bits and a page offset consisting of 12 bits. Because we page
the page table, the page number is further divided into a 10-bit page number
and a 10-bit page offsat. Thus, alogical addressis as follows:

page number page offset

12

where p; is an index into the outer page table and p; is the displacement
within the page of the outer page table. The address-translation method for this
architecture is shown in Figure 8.15. Because address translation works from
the outer page table inward, this scheme is aso known as a forward-mapped
page table.

The VAX architecture also supportsavariation of two-level paging. The VAX - .
is a 32-bit machine with a page size of 512 bytes. The logical address space of a
process is divided into four equal sections, each of which consists of 2™ bytes.
Each section represents a different part of the logical address space of aprocess.
The firg 2 high-order bits of the logical address designate the appropriate
section. The next 21 bits represent the logical page number of that section, and
the find 9 bits represent an offset in the desired page. By partitioning the page
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Figure 8.15 Address translation for a two-level 32-bit paging architecture.

table in this manner, the operating system can |leave partitions unused until a
process heeds them. An address on the VAX architecture is as follows:

section ,__page offset

s Lk
2 21 9

where s designates the section number, p is an index into the page table, and «
is the displacement within the page. Even when this scheme is used, the size
of aone-level page table for a VAX process using one sectionis2?! bits + 4 bytes
per entry = 8 MB. So that main-memory use is reduced further, the vax pages
the user-process page tables.

For a system with a64-bit logical-address space, a two-level paging scheme
is no longer appropriate. To illustrate this point, et us suppose that the page
size in such a system is 4 KB (2'). In‘this case, the page table consists of up
to 2% entries. If we use a two-level paging scheme, then the inner page tables
can conveniently be one page long, or contain 2'° 4-byte entries. The addresses
look like this: ’

outer page inner page offset

|
T ; . R
R AN
| s R S

42 10 12

The outer page table consists of 2* entries, or 2** bytes. The obvious way to
avoid such a large table is to divide the outer page table into smaller pieces.
This approach is also used on some 32-bit processors for added flexibility and
efficiency.

We can divide the outer page table in various ways. We can page the outer
page table, giving us a three-level paging scheme. Suppose that the outer page
table is made up of standard-size pages (2'" entries, or 2'* bytes); a 64-bit
address space is still daunting:

2nd outer page , outer page ] inner page  offset

! 1, 28 . B, d J

32 10 10 12

The outer page table is still 2* bytesin size.
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The next step would be a four-level paging scheme, where the second-
level outer page table itself is a'so paged. The SPARC architecture (with 32-bit
addressing) supports a three-level paging scheme, whereas the 32-bit Motorola
68030 architecture supports a four-level paging scheme.

For 64-bit architectures, hierarchical page tables are generally considered
inappropriate. For example, the 64-bit UltraSPARC would require seven levels of
paging—a prohibitive number of memory accesses—to translate each logical
address.

8.5.2 Hashed Page Tables

A common approach for handling address spaces larger than 32 bitsis to use
a hashed page table, with the hash value being the virtual page number. Each
entry in the hash table contains a linked list of elements that hash to the same
location (to handle collisions). Each element consists of three fields: (1) the
virtual page number, (2) the value of the mapped page frame, and (3) a pointer
to the next element in the linked list.

The algorithm works as follows: The virtual page number in the virtual
address is hashed into the hash table. The virtual page number is compared
with fidd 1 in the firg element in the linked list. If there is a match, the
corresponding page frame (field 2) is used to form the desired physical address.
If there is no match, subsequent entries in the linked list are searched for a
matching virtual page number. This scheme is shown in Figure 8.16.

A variation of this scheme that is favorable for 64-bit address spaces has
been proposed. This variation uses clustered page tables, which are similar to
hashed page tables except that each entry in the hash table refers to several
pages (such as 16) rather than a single page. Therefore, a single page-table
entry can store the mappings for multiple physical-page frames. Clustered
page tables are particularly useful for sparse address spaces, where memory
references are noncontiguous and scattered throughout the address space.
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Figure 8.16 Hashed page table.
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8.5.3 Inverted Page Tables

Usually, each process has an associated page table. The page table has one
entry for each page that the process is using (or one slot for each virtual
address, regardless of the latter s validity). Thistable representation isanatural
one, since processes reference pages through the pages' virtual addresses. The
operating system must then translate this reference into a physical memory
address. Since the table is sorted by virtual address, the operating system is
able to calculate where in the table the associated physical address entry is and
to use that value directly. One of the drawbacks of this method is that each
page table may consist of millions of entries. These tables may consume large
amounts of physical memory just to keep track of how other physical memory
is being used.

To solve this problem, we can. use an inverted page table. An inverted
page table has one entry for each real page (or frame) of memory. Each entry
consists of the virtual address of the page stored in that real memory location,
with information about the process that owns that page. Thus, only one page
table is in the system, and it has only one entry for each page of physical
memory. Figure 8.17 shows the operation of an inverted page table. Compare
it with Figure 8.7, which depicts a standard page table in operation. Inverted
page tables often require that an address-space identifier (Section 84.2) be
stored in each entry of the page table, since the table usually contains several
different address spaces mapping physical memory. Storing the address-space
identifier ensures that a logical page for a particular process is mapped to the
corresponding physical page frame. Examples of systems using inverted page .
tables include the 64-bit UltraSPARC and PowerPC.

To illustrate this method, we describe a simplified version of the inverted
page table used in the IBM RT. Each virtual address in the system consists of a
triple

<process-id, page-number, offset>.
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Each inverted page-table entry is a pair <process-id, page-number> where the
process-id assumes the role of the address-space identifier. When a memory
reference occurs, part of the virtual address, consisting of <process-id, page-
number>, is presented to the memory subsystem. The inverted page table
is then searched for a match. If a match is found—say, a entry i—then the
physical address <i, orfset> is generated. If no match is found, then an illegal
address access has been attempted.

Although this scheme decreases the amount of memory needed to store
each page table, it increases the amount of time needed to search the table when
a page reference occurs. Because the inverted page table is sorted by physical
address, but lookups occur on virtual addresses, the whole table might need to
be searched for a match. This search would take far too long. To alleviate this
problem, we use a hash table, as described in Section 8.5.2, to limit the search
to one—or at most a few —page-table entries. Of course, each access to the
hash table adds a memory reference to the procedure, so one virtual memory-
reference requires at least two real memory reads—one for the hash-table
entry and one for the page table. To improve performance, recall that the TLB
is searched first, before the hash table is consulted.

Systems that use inverted page tables have difficulty implementing shared
memory. Shared memory is usually implemented as multiple virtual addresses
(one for each process sharing the memory) that are mapped to one physical
address. This standard method cannot be used with inverted page tables;
because there is only one virtual page entry for every physical page, one
physical page cannot have two (or more) shared virtual addresses. A simple
technique for addressing this issue is to allow the page table to contain only
one mapping of a virtual address to the shared physical address. This means
that references to virtual addresses that are not mapped result in page faults.

Segmentation

An important aspect of memory management that became unavoidable with
paging is the separation of the user's view of memory and the actual physical
memory. As we have already seen, the user's view of memory is not the
same as the actual physical memory. The user'sview is mapped onto physical
memory. This mapping allows differentiation between logicad memory and.
physical memory.

8.6.1 Basic Method

Do users think of memory as a linear array of bytes, some containing
instructions and others containing data? Most people would say no. Rather,
users prefer to view memory as a collection of variable-sized segments., with
no necessary ordering among segments (Figure 8.18).

Consider how you think of a program when you are writing it. You think
of it as a main program with a set of methods, procedures, or functions. It
may also include various data structures: objects, arrays, stacks, variables, and
so on. Each of these modules or data elements is referred to by name. You
talk about "the stack,” "the math library,” “the main program,” without caring
what addresses in memory these elements occupy. You are not concerned



S6 Segmentation 33

‘|

! ]

§ H j i symhbol I------l

| L odable | |

: i e

SRR

4 i | Lomain ke e
L —
hY i | | program ! /
\ ' | T

\V

logical address

Figure 8.18 User's view of a program.

with whether the stack is stored before or after the Sqgrt () function. Each
of these segments is of variable length; the length is intrinsically defined by
the purpose of the segment in the program. Elements within a segment are
identified by their offset from the beginning of the segment: the first statement
of the program, the seventh stack frame entry in the stack, the fifth instruction
of the Sgrt (), and so on.

Segmentation is a memory-management scheme that supports this user
view of memory. A logical address space is a collection of segments. Each
segment has aname and a length. The addresses specify both the segment name
and the offset within the segment. The user therefore specifies each address
by two quantities: a segment name and an offset. (Contrast this scheme with
the paging scheme, in which the user specifies only a single address, which is
partitioned by the hardware into a page number and an offset, dl invisible to
the programmer.)

For simplicity of implementation, segments are numbered and are referred

to by a segment number, rather than by a segment name. Thus, alogica address
consists of atwo tuple:

< segment-number, offset>.

Normally, the user program is compiled, and the compiler automatically
constructs segments reflecting the input program.
A C compiler might create separate segments for the following:

The code

Global variables

The heap, from which memory is allocated
The stacks used by each thread

The standard C library

o 0w NP
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Libraries that are linked in during compile time might be assigned separate
segments. The loader would take dl these segments and assign them segment
numbers.

8.6.2 Hardware

Although the user can now refer to objects in the program by a two-dimensional
address, the actual physical memory is ill, of course, a one-dimensional
sequence of bytes. Thus, we must define an implementation to map two-
dimensional user-defined addresses into one-dimensional physical addresses.
This mapping is effected by a segment table. Each entry in the segment table
has a segment base and a segment limit. The segment base contains the starting
physical address where the segment resides in memory, whereas the segment
limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.19. A logical address
consists of two parts: a segment number, s, and an offset into that segment, d.
The segment number is used as an index to the segment table. The offset d of
thelogical address must be between 0 and the segment limit. If itis not, we trap
to the operating system (logical addressing attempt beyond end of segment).
When an offset is legal, it is added to the segment base to produce the address
in physical memory of the desired byte. The segment table is thus essentially
an array of base-limit register pairs.

As an example, consider the situation shown in Figure 8.20. We have five
segments numbered from O through 4. The segments are stored in physical
memory as shown. The segment table has a separate entry for each segment,
giving the beginning address of the segment in physical memory (or base) and
the length of that segment (or limit). For example, segment 2 is 400 bytes long
and begins at location 4300. Thus, areferenceto byte 53 of segment 2 is mapped

L

limit |[base F—
segment
_ table
CPU & s Ld_
¥

¥

yes ( ™~ i
e < 4 p—
S !

no

X — |

trap: addressing error physical memory

Figure 8.19 Segmentation hardware.
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Figure 8.20 Exampie of segmentation.

onto location 4300 + 53 = 4353. A reference to segment 3, byte 852, is mapped to
3200 (the base of segment 3) + 852 = 4052. A reference to byte 1222 of segment
0 would result in a trap to the operating system, as this segment is only 1,000
bytes long.

Example: The Intel Pentium

Both paging and segmentation have advantages and disadvantages. In fact,
some architectures provide both. In this section, we discuss the Intel Pentium
architecture, which supports both pure segmentation and segmentation with
paging. We do not give a complete description of the memory-management
structure of the Pentium in this text. Rather, we present the major ideas on
which it is based. We conclude our discussion with an overview of Linux
address translation on Pentium systems.

In Pentium systems, the CPU generates logical addresses, which are given
to the segmentation unit. The segmentation unit produces a linear address for
each logical address. The linear address is then given to the paging unit, which
in turn generates the physical addressin main memory. Thus, the segmentation
and paging units form the equivalent of the memory-management unit (MMU}.
This scheme is shown in Figure 8.21.

8.7.1 Pentium Segmentation

The Pentium architecture allows a segment to be as large as 4 GB, and the
maximum number of segments per process is 16 KB. The |ogical-address space
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Figure 8.21 Logical to physical address translation in the Pentium.

i
!

of a process is divided into two partitions. The firgt partition consists of up to
8 KB segments that are private to that process. The second partition consists
of up to 8 KB segments that are shared among al the processes. Information
about the first partition is kept in the local descriptor table (1.DT); information
about the second partition is kept in the global descriptor table (GDT). Each
entry in the LDT and GDT consists of an 8-byte segment descriptor with detailed
information about a particular segment, including the base location and limit
of that segment.

The logical addressis a pair (selector, offsat), where the selector is a 16-bit
number:

13 1 2
in which s designates the segment number, g indicates whether the segment is
in the GDT or LDT, and p deals with protection. The offset is a 32-bit number
specifying the location of the byte (or word) within the segment in question.

The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It also has six 8-byte microprogram
registers to hold the corresponding descriptors from either the LDT or GDT.
This cache lets the Pentium avoid having to read the descriptor from memory
for every memory reference.

The linear address on the Pentium is 32 bits long and is formed as follows.
The segment register points to the appropriate entry in the LDT or GDT. The
base and limit information about the segment in question is used to generate
a linear address. First, the limit is used to check for address validity. If the
address is not valid, a memory fault is generated, resulting in a trap to the
operating system. If it isvalid, then the value of the offsat is added to the value
of the base, resulting in a 32-bit linear address. Thisis shownin Figure 8.22. In
the following section, we discuss how the paging unit turns this linear address
into a physical address.

8.7.2 Pentium Paging

The Pentium architecture allows a page size of either 4 KB or 4 MB. For 4KB
pages, the Pentium uses a two-level paging scheme in which the division of
the 32-bit linear address is as follows:

page number , Ppage offset
L & i - : . tf . .
10 10 12

The address-translation scheme for this architecture is similar to the scheme
shown in Figure 8.15. The Intel Pentium address translation is shown in more



87 Example: The Intd Pentium 307

logical address }. sélector. | . : < offset i f o R

descriptor table

segmeant dessripton.

32-bit linear address
Figure 8.22 Intel Pentium segmentation.

detail in Figure 8.23. The ten high-order bits reference an entry in the outermost
page table, which the Pentium terms the page directory. (The CR3 register
points to the page directory for the current process.) The page directory entry
points to an inner page table that is indexed by the contents of the innermost
ten bitsin the linear address. Finaly, the low-order bits 011 refer to the offsat
in the 4KB page pointed to in the page table.

One entry in the page directory is the Page Size flag, which—if set—
indicates that the size of the page frame is 4 MB and not the standard 4 KB.
If this flag is set, the page directory points directly to the 4MB page frame,
bypassing the inner page table; and the 22 low-order bits in the linear address
refer to the offset in the 4MB page frame.

To improve the efficiency of physical memory use, Intel Pentium page
tables can be swapped to disk. In this case, an invalid bit is used in the page
directory entry to indicate whether the table to which the entry is pointing is
in memory or on disk. If the table is on disk, the operating system can use
the other 31 bits to specify the disk location of the table; the table then can be
brought into memory on demand.

8.7.3 Linux on Pentium Systems

As an illustration, consider the Linux operating system running on the Intel
Pentium architecture. Because Linux is designed to run on a variety of proces-
sors—many of which may provide only limited support for segmentation—
Linux does not rely on segmentation and uses it minimally. On the Pentium,
Linux uses only sx segments:

A segment for kernel code

A segment for kernel data

A segment for user code

A segment for user data

A task-state segment (TSS

A default LDT segment

S I A
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Figure 8.23 Paging in the Pentium architecture.

The segments for user code and user data are shared by al processes
running in user mode. This ispossible because al processes usethe same logical
address space and all segment descriptors are stored in the global descriptor
table (GDT). Furthermore, each process has its own task-state segment (TSS),
and the descriptor for this segment is stored in the GDT. The TSSis used to store
the hardware context of each process during context switches. The default LDT
segment is normally shared by al processes and is usually not used. However,
if a process requires its own LDT, it can create one and use that instead of the
default LDT.

As noted, each segment selector includes a 2-bit field for protection. Thus,
the Pentium allows four levels of protection. Of these four levels, Linux only
recognizes two: user mode and kernel mode.

Although the Pentium uses a two-level paging model, Linux is designed
to run on avariety of hardware platforms, many of which are 64-bit platforms
where two-level paging is not plausible. Therefore, Linux has adopted a three-
level paging strategy that works well for both 32-bit and 64-bit architectures.

The linear address in Linux is broken into the following four parts:

global | middie ; page " |
directory 5 directory | table offsel !

Figure 824 highlights the three-level paging model in Linux.

The number of bits in each part of the linear address varies according
to architecture. However, as described earlier in this section, the Pentium
architecture only uses a two-level paging model. How, then, does Linux apply
its three-level model on the Pentium? In this situation, the size of the middle
directory is zero bits, effectively bypassing the middle directory.
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Each task in Linux hasits own set of page tables and —just asin Figure 8.23
— the CR3 register points to the global directory for the task currently executing.
During a context switch, the value of the CR3 register is saved and restored in
the TSS segments of the tasks involved in the context switch.

Summary

Memory-management algorithms for multiprogrammed operating systems
range from the simple single-user system approach to paged segmentation.
The most important determinant of the method used in a particular system is
the hardware provided. Every memory address generated by the CRU must be
checked for legality and possibly mapped to a physical address. The checking
cannot be implemented (efficiently) in software. Hence, we are constrained by
the hardware available.

The various memory-management algorithms (contiguous allocation, pag-
ing, segmentation, and combinations of paging and segmentation) differ in
many aspects. In comparing different memory-management strategies, we use
the following considerations:

» Hardware support. A simple base register or a base-limit register pair is
sufficient for the single- and multiple-partition schemes, whereas paging
and segmentation need mapping tables to define the address map.

= Performance. As the memory-management algorithm becomes more
complex, the time required to map alogical address to a physical address
increases. For the simple systems, we need only compare or add to the
logical address—operations that are fast. Paging and segmentation can be
as fast if the mapping table is implemented in fast registers. If the table is
in memory, however, user memory accesses can be degraded substantially.
A TLB can reduce the performance degradation to an acceptable level.
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Fragmentation. A multiprogrammed system will generally perforny more
efficiently if it has a hlgher level of multiprogramming. For a given
set of processes, we can increase the multlprogrammlng level only by
packing more processes into memory. To accomplish this task, we must
reduce memory waste, or fragmentation. Systems with fixed-sized allo-
cation units, such as the single-partition scheme and paging, suffer from
internal fragmentation. Systems with variable-sized allocation units, such
as the multiple-partition scheme and segmentation, suffer from external
fragmentation.

Relocation. One solution to the external-fragmentation problem is com-
paction. Compaction involves shifting a program in memory in such a
way that the program does not notice the change. This consideration
requires that logical addresses be relocated dynamically, at execution time.
If addresses are relocated only at load time, we cannot compact storage.

Swapping. Swapping can be added to any algorithm. At intervals deter-
mined by the operating system, usually dictated by CPU-scheduling poli-
cies, processes are copied from main memory to a backing store and laer-
are copied back to main memory. This scheme allows more processes to be
run than can be fit into memory at one time.

Sharing. Another means of increasing the multiprogramming level is to
share code and data among different users. Sharing generally requires
that either paging or segmentation be used, to provide small packets of
information (pages or segments) that can be shared. Sharing is a means
of running many processes with a limited amount of memory, but shared
programs and data must be designed carefully. )

Protection. If paging or segmentation is provided, different sections of a
user program can be declared execute-only, read-only, or read-write. This
restriction is necessary with shared code or data and is generally useful
in any case to provide simple run-time checks for common programming
errors.

Exercises
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Explain the difference between internal and external fragmentation.

Consider the following process for generating binaries. A compiler is
used to generate the object code for individual modules, and a linkage
editor is used to combine multiple object modules into a single program
binary. How does the linkage editor change the binding of instructions
and data to memory addresses? What information needs to be passed
from the compiler to the linkage editor to facilitate the memory binding
tasks of the linkage editor?

Given five memory partitions of 100 KB, 500 KB, 200 KB, 300 KB, and
600 KB (in order), how would each of the first-fit, best-fit, and worst-fit
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
order)? Which algorithm makes the most efficient use of memory?
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Most systems allow programs to alocate more memory to its address
space during execution. Data allocated in the heap segmenis of programs
is an example of such allocated memory. What is required to support
dynamic memory alocation In the following schemes?

a. contiguous-memory allocation
b. pure segmentation

C. pure paging

Compare the main memory organization schemes of contiguous-
memory allocation, pure segmentation, and pure paging with respect
to the following issues:

a. external fragmentation
b. internal fragmentation
c. ability to share code across processes

On a system with paging, a process cannot access memory that it does
not own. Why? How could the operating system allow access to other
memory? Why should it or should it not?

Compare paging with segmentation with respect to the amount of
memory required by the address translation structures in order to
convert virtual addresses to physical addresses.

Program binaries in many systems are typically structured as follows.
Code is stored starting with a small fixed virtual address such as 0. The
code segment is followed by the data segment that is used for storing
the program variables. When the program starts executing, the stack is
allocated at the other end of the virtual address space and is allowed to
grow towards lower virtual addresses. What is the significance of the
above structure on the following schemes?

a. contiguous-memory allocation
b. pure segmentation
C. pure paging
Consider a paging system with the page table stored in memory.

a. if a memory reference takes 200 nanoseconds, how long does a
paged memory reference take?

b. If we add TLBs and 75 percent of all page-table references are
found in the TLBs what is the effective memory reference time?
(Assume that finding a page-table entry in the TLBs takes zero
time, if the entry is there.) '

Why are segmentation and paging sometimes combined into one
scheme?

Explain why sharing a reentrant module is easier when segmentation is
used than when pure paging is used.
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812 Consider the following segment table:

Segnent Base Lengt h
0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?
a 0430
b. 1,10
c. 2,500
d. 3400
e 4112
8.13 What isthe purpose of paging the page tables?

8.14 Consider the hierarchical paging scheme used by the VAX architecture.
How many memory operations are performed when an user program
executes a memory load operation?

8.15 Compare the segmented paging scheme with the hashed page tables
scheme for handling large address spaces. Under what circumstances is
one scheme preferable to the other?

8.16 Consider the Intel address-translation scheme shown in Figure 8.22.

a Describe al the steps taken by the Intel Pentium in translating a
logical addressinto a physical address.

b. What are the advantages to the operating system of hardware that
provides such complicated memory translation?

c. Arethere any disadvantages to this address-translation system? If
so, what are they? If not, why isit not used by every manufacturer?
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originally implemented (Organick [1972] and Daey and Dennis [1967]).

Inverted page tables were discussed in an article about the IBM RT storage
manager by Chang and Mergen [1988].
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In Chapter 8, we discussed various memory-management strategies used in
computer systems. All these strategies have the same goal: to keep many
processes in memory simultaneously to allow multiprogramming. However,
they tend to require that an entire process be in memory before it can execute.

Virtual memory is a technique that allows the execution of processes
that are not completely in memory. One mgjor advantage of this scheme is
that programs can be larger than physical memory. Further, virtual memory
abstracts main memory into an extremely large, uniform array of storage,
separating logical memory as viewed by the user from physical memory.
This technique frees programmers from the concerns of memory-storage
limitations. Virtual memory also allows processes to share files easily and
to implement shared memory. In addition, it provides an efficient mechanism
for process creation. Virtual memory is not easy to implement, however, and
may substantially decrease performance if it is used carelessly. In this chapter,
we discuss virtual memory in the form of demand paging and examine its
complexity and cost.

CHAPTER OBJECTIVES

* To describe the benefits of a virtual memory system.

» To explain the concepts of demand paging, page-replacement algorithms,
and allocation of page frames.

» To discuss the principles of the working-set model.

Background

The memory-management algorithms outlined in Chapter 8 are necessary
because of one basic requirement: The instructions being executed must be
in physical memory. The first approach to meeting this requirement is to place
the entire logical address space in physical memory. Dynamic |oading can help
to ease this restriction, but it generally requires special precautions and extra
work by the programmer.

315
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The requirement that instructions must be in physical memory te be
executed seems both necessary and reasonable; but it is aso unfortunate, since
it limits the size of a program to the size of physical memory. In fact, an
examination of real programs shows us that, in many cases, the entire program
is not needed. For instance, consider the following:

» Programs often have code to handle unusual error conditions. Since these
errors seldom, if ever, occur in practice, this code is almost never executed.

* Arrays, lists, and tables are often allocated more memory than they actually
need. An array may be declared 100 bv 100 elements, even though it is
seldom larger than 10 by 10 elements. An assembler symbol table may
have room for 3,000 symbols, although the average program has less than
200 symbols.

 Certain options and features of a program may be used rarely. For instance,
theroutineson US government computersthat balance thebudget are only

rarely used.

Even in those cases where the entire program is needed, it may not all be
needed at the same time.

The ability to execute a program that is only partially in memory would
confer many benefits:

* A program would no longer be constrained by the amount of physical
memory that is available. Users would be able to write programs for an
extremely large virtual address space, simplifying the programming task.

page O
page 1
page 2

page v

memory

virtual
memory

Figure 9.1 Diagram showing virtual memory that is larger than physical memory.
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* Because each user program could take less physical memory, :more
programs could be run at the same time, with a corresponding increase in
CRU utilization and throughput but with no increase in response time or
turnaround time.

* Lessl/O would be needed to load or swap each user program into memory,
so each user program would run faster.

Thus, running a program that is not entirely in memory would benefit both
the system and the user.

Virtual memory involves the separation of logical memory as perceived
by users from physical memory. This separation allows an extremely large
virtual memory to be provided for programmers when only a smaller physical
memory is available (Figure 9.1). Virtual memory makes the task of program-
ming much easier, because the programmer no longer needs to worry about
the amount of physical memory available; she can concentrate instead on the
problem to be programmed.

The virtual address space of aprocess refersto the logical (or virtual) view
of how a process is stored in memory. Typicaly, this view is that a process
begins at a certain logical address—say, address 0—and exists in contiguous
memory, as shown in Figure 9.2. Recall from Chapter 8, though, that in fact
physical memory may be organized in page frames and that the physical page
frames assigned to a process may not be contiguous. Tt is up to the memory-
management unit (MMU) to map logical pages to physical page frames in
memory.

Note in Figure 9.2 that we allow for the heap to grow upward in memory
asitis used for dynamic memory allocation. Similarly, we allow for the stack to
grow downward in memory through successive function calls. The large blank
space (or hole) between the heap and the stack is part of the virtual address

Figure 9.2 Virtual address space.
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space but will require actual physical pages only if the heap or stack groivs.
Virtual address spaces that include holes are known as sparse address spaces.
Using a sparse address space is beneficia because the holes can be filled as the
stack or heap segments grow or if we wish to dynamically link libraries (or
possibly other shared objects) during program execution.

In addition to separating logical memory from physical memory, virtual
memory also allows files and memory to be shared by two or more processes
through page sharing (Section 8.4.4). This leads to the following benefits:

» System libraries can be shared by several processes through mapping
of the shared object into a virtual address space. Although each process
considers the shared libraries to be part of its virtual address space, the
actual pages where the libraries reside in physical memory are shared by
al the processes (Figure 9.3). Typically, alibrary is mapped read-only into
the space of each process that is linked with it.”

* Similarly, virtual memory enables processes to share memory. Recall from
Chapter 3 that two or more processes can communicate through the use
of shared memory. Virtual memory allows one process to create a region
of memory that it can share with another process. Processes sharing this
region consider it part of their virtual address space, yet the actual physical
pages of memory are shared, much asis illustrated in Figure 9.3.

 Virtual memory can alow pages to be shared during process creation with
the fork () system call, thus speeding up process creation.

We will further explore these—and other—benefits of virtual memory later in
this chapter. First, webegin with a discussion of implementing virtual memory-
through demand paging.

stack : stack

.. l

shiared library

Figure 9.3 Shared library using virtual memory.
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Demand Paging

Consider how an executable program might be loaded from disk into memory.
One option is to load the entire program in physical memory at program
execution time. However, a problem with this approach is that we may not
initially need the entire program in memory. Consider a program that starts
with a list of available options from which the user is to select. Loading the
entire program into memory results in loading the executable code for ail
options, regardless of whether an option is ultimately selected by the user or
not. An alternative strategy is to initially load pages only as they are needed.
This technique is known as demand paging and is commonly used in virtual
memory systems. With demand-paged virtual memory, pages are only |oaded
when they are demanded during program execution; pages that are never
accessed are thus never loaded into physical memory.

A demand-paging system is similar to a paging system with swapping
(Figure 9.4) where processes reside in secondary memory (usually a disk).
When we want to execute a process, we swap it into memory. Rather than
swapping the entire process into memory, however, we use a lazy swapper. A
lazy swapper never swaps a page into memory unless that page will be needed.
Since we are now viewing a process as a sequence of pages, rather than as one
large contiguous address space, use of the term swapper is technically incorrect.
A swapper manipulates entire processes, whereas a pager is concerned with
the individual pages of a process. We thus use pager, rather than swapper, in
connection with demand paging.

[
pro%ram ! N swap out
program L )
B i "\ swap in

main
memory

Figure 9.4 Transfer of a paged memory to contiguous disk space.
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9.2.1 Basic Concepts

When a process is to be swapped in, the pager guesses which pages will be
used before the process is swapped out again. Instead of swapping in awhole
process, the pager brings only those necessary pages into memory. Thus, it
avoids reading into memory pages that will not be used anyway, decreasing
the swap time and the amount of physical memory needed.

With this scheme, we need some form of hardware support to distinguish
between the pages that are in memory and the pages that are on the disk. The
valid-invalid bit scheme described in Section 8.5 can be used for this purpose.
This time, however, when this bit is set to “valid,” the associated page is both
legal and in memory. If the bit is set to "invalid," the page either is not valid
(that is, not in the logical address space of the process) or isvalid but is currently
on the disk. The page-table entry for a page that is brovight into memory is set
as usual, but the page-table entry for a page that is not currently in memory is
either simply marked, invalid or contains the address of the page on disk. This
situation is depicted in Figure 9.5.

Notice that marking a page invalid will have no effect if the process never
attempts to access that page. Hence, if we guess right and page in all and only
those pages that are actually needed, the process will run exactly as though we
had brought in al pages. While the process executes and accesses pages that
are memory resident, execution proceeds normally.

0
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0 A 5
valid-invalid N
1 B bit 3 /—\\
frame , /
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Figure 9.5 Page table when some pages are not in main memory.
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Figure 9.6 Steps in handling a page fault.

But what happens if the process tries to access a page that was not brought
into memory? Access to a page marked invalid causes a page-fault trap. The
paging hardware, in translating the address through the page table, will notice
that the invalid bit is set, causing a trap to the operating system. This trap isthe
result of the operating system's failure to bring the desired page into memory.
The procedure for handling this page fault is straightforward (Figure 9.6):

1. We check an internal table (usually kept with the process control block)
for this process to determine whether the reference was a valid or an
invalid memory access.

2. If the reference was invalid, we terminate the process. If it wasvalid, but
we have not yet brought in that page, we now page it in.

3. Wefind a free frame (by taking one from the free-frame list, for example).

. We schedule a disk operation to read the desired page into the newly
allocated frame.

5. When the disk read is complete, we modify the internal table kept with
the process and the page table to indicate that the page is now in memory. - -

6. We restart the instruction that was interrupted by the trap. The process
can now access the page as though it had always been in memory.

In the extreme case, we can start executing a process with 50 pages in
memory. When the operating system sets the instruction pointer to the first
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instruction of the process, which is on anon-memory-resident page, the process
immediately faults for the page. After this page is brought into memory, the
process continues to execute, faulting as necessary until every page that it
needs is in memory. At that point, it can execute with no more faults. This
scheme is pure demand paging: Never bring a page into memory until it is
required.

Theoretically, some programs could access several new pages of memory
with each instruction execution (one page for the instruction and many for
data), possibly causing multiple page faults per instruction. This situation
would result in unacceptable system performance. Fortunately, analysis of
running processes shows that this behavior is exceedingly unlikely. Programs
tend to have locality of reference, described in Section 9.6.1, which results in
reasonable performance from demand paging.

The hardware to support demand paging is the same as the hardware for

paging and swapping:

« Page table. This table has the ability to mark an entry invalid through a
valid-invalid bit or special value of protection bits.

* Secondary memory. This memory holds those pages that are not present
in main memory. The secondary memory is usually a high-speed disk. Itis
known as the swap device, and the section of disk used for this purposeis
known as swap space. Swap-space allocation is discussed in Chapter 12.

A crucia requirement for demand paging is the need to be able to restart
any instruction after a page fault. Because we save the state (registers, condition
code, instruction counter) of the interrupted process when the page fault
occurs, we must be able to restart the process in exactly the same place and
state, except that the desired page is now in memory and is accessible. [n most
cases, this requirement is easy to meet. A page fault may occur at any memory
reference. If the page fault occurs on the instruction fetch, we can restart by-
fetching the instruction again. If a page fault occurs while we are fetching an
operand, we must fetch and decode the instruction again and then fetch the
operand.

As aworst-case example, consider a three-address instruction such as ADD
the content of A to B, placing the result in C. These are the steps to execute this
instruction:

1. Fetch and decode the instruction (ADD).
Fetch A.
Fetch B.

Add A and B.
Storethe sumin C.

o~ w D

If we fault when we try to store in C (because C is in a page not currently
in memory), we will have to get the desired page, bring it in, correct the
page table, and restart the instruction. The restart will require fetching the
instruction again, decoding it again, fetching the two operands again, and
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then adding again. However, there is not much repeated work (less than one
complete instruction), and the repetition is necessary only when a page fault
oCCurs.

The major difficulty arises when one instruction may modify several
different locations. For example, consider the IBM. System 360/370 MVC (move
character) instruction., which can move up to 256 bytes from one location to
another (possibly overlapping) location. If either block (source or destination)
straddles a page boundary, a page fault might occur after the move is partially
done. In addition, if the source and destination blocks overlap, the source
block may have been modified, in which case we cannot simply restart the
instruction. )

This problem can be solved in two different ways. In one solution, the
microcode computes and attempts to access both ends of both blocks. If a page
fault is going to occur, it will happen at this step, before anything is modified.
The move can then take place; we know that no page fault can occur, since all
the relevant pages are in memory. The other solution uses temporary registers
to hold the values of overwritten locations. If there is a page fault, all the old
values are written back into memory before the trap occurs. This action restores
memory to its state before the instruction was started, so that the instruction
can be repeated.

This is by no means the only architectural problem resulting from adding
paging to an existing architecture to allow demand paging, but it illustrates
some of the difficulties involved. Paging is added between the CRU and the
memory in a computer system. It should be entirely transparent to the user
process. Thus, people often assume that paging can be added to any system.
Although this assumption is true for a non-demand-paging environment,
where a page fault represents a fatal error, it is not true where a page fault
means only that an additional page must be brought into memory and the
process restarted.

9.2.2 Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.
To see why, let's compute the effective access time for a demand-paged
memory. For most computer systems, the memory-access time, denoted ma,
ranges from 10 to 200 nanoseconds. As long as we have no page faults, the
effective access time is equal to the memory access time. If, however, a page
fault occurs, we must first read the relevant page from disk and then access the
desired word.

Let p be the probability of a page fault (0 <p < 1). We would expect p to
be close to zero—thatis, we would expect to have only a few page faults. The
effective access time is then

effective accesstime = (1 - p) x ma + p x page fault time.

To compute the effective access time, we must know how much time is
needed to service a page fault. A page fault causes the following sequence to
occur:

1. Trap to the operating system.

2. Save the user registers and process state.
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3. Determine that the interrupt was a page fault.

. Check that the page reference was legal and determine the location of the
page on the disk.

5. Issue aread from the disk to a free frame:
a. Wait in a queue for this device until the read request is serviced.
b. Wait for the device seek and/or latency time.
c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user (CPU scheduling,
optional).

Receive an interrupt from the disk i/0 subsystem (1,0 completed).
Save the registers and process state for the other user (if step 6 isexecuted).
Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is
no